Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 3/2011

01-09-2011

Pregnancy-Induced Changes in Breast Cancer Risk

Authors: Irma H. Russo, Jose Russo

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 3/2011

Login to get access

Abstract

Breast cancer is the malignant disease most frequently diagnosed in women of all races and nationalities. Since the 1970s the worldwide incidence of this disease has increased 30–40% in postmenopausal women, in whom, paradoxically, the risk of developing breast cancer is significantly reduced by an early first full term pregnancy (FTP) as compared to nulliparous and late parous women. Although the cause of breast cancer is not known, the mechanisms mediating the protection conferred by an early FTP have been identified to reside in the breast itself, and to be modulated by endogenous and environmental exposures that might negatively affect this organ during specific windows in its development that extend from prenatal life until the first pregnancy. Soon after conception the embryo initiates the production of human chorionic gonadotropin (hCG), the glycoprotein hormone that is diagnostic of pregnancy. HCG in conjunction with ovarian steroid hormones primes the hypothalamic neuroendocrine system for maintaining the pregnancy. Higher levels of hCG during the first trimester of pregnancy have been associated with a reduction in maternal breast cancer incidence after age 50. In preclinical studies it has been demonstrated that both FTP and hCG treatment of virgin rats prevent the development of chemically-induced mammary tumors, a phenomenon mediated by the differentiation of the mammary gland epithelial cells prior to carcinogen exposure. Complete differentiation proceeds through complex morphological, physiological and molecular changes that occur during pregnancy and lactation, that ultimately result in increased DNA repair capabilities of the mammary epithelium, activation of genes controlling differentiation and programmed cell death and imprinting in the breast epithelium a specific and permanent genomic signature of pregnancy. This signature is indicative of a reduced breast cancer risk and serves as a molecular biomarker of differentiation for evaluating the potential use of chemopreventive agents.
Literature
1.
go back to reference Breasted JH, editor. The Edwin Smith Surgical Papyrus: published in facsimile and hieroglyphic transliteration with translation and commentary in two volumes, vol. 1. Chicago: University of Chicago Press; 1991. Breasted JH, editor. The Edwin Smith Surgical Papyrus: published in facsimile and hieroglyphic transliteration with translation and commentary in two volumes, vol. 1. Chicago: University of Chicago Press; 1991.
2.
go back to reference Clarke CA, Purdie DM, Glaser SL. Population attributable risk of breast cancer in white women associated with immediately modifiable risk factors. BMC Cancer. 2006;6:170.PubMedCrossRef Clarke CA, Purdie DM, Glaser SL. Population attributable risk of breast cancer in white women associated with immediately modifiable risk factors. BMC Cancer. 2006;6:170.PubMedCrossRef
3.
go back to reference Botha JL, Bray F, Sanlika R, Parkin DM. Breast cancer incidence and mortality trends in 16 European countries. Europ J Cancer. 2003;39:1718–29.CrossRef Botha JL, Bray F, Sanlika R, Parkin DM. Breast cancer incidence and mortality trends in 16 European countries. Europ J Cancer. 2003;39:1718–29.CrossRef
4.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef
5.
go back to reference Nagata C, Mizoue T, Tanaka K, Tsuji I, Wakai K, Inoue M, et al. Tobacco smoking and breast cancer risk: an evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol. 2006;36:387–94.PubMedCrossRef Nagata C, Mizoue T, Tanaka K, Tsuji I, Wakai K, Inoue M, et al. Tobacco smoking and breast cancer risk: an evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol. 2006;36:387–94.PubMedCrossRef
6.
go back to reference Maskarinec G, Pagano I, Chen Z, Nagata C, Gram IT. Ethnic and geographic differences in mammographic density and their association with breast cancer incidence. Breast Cancer Res Treat. 2007;104:47–56.PubMedCrossRef Maskarinec G, Pagano I, Chen Z, Nagata C, Gram IT. Ethnic and geographic differences in mammographic density and their association with breast cancer incidence. Breast Cancer Res Treat. 2007;104:47–56.PubMedCrossRef
7.
go back to reference Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA. Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol. 2005;34:405–12.PubMedCrossRef Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA. Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol. 2005;34:405–12.PubMedCrossRef
8.
go back to reference MacMahon B, Cole P, Lin TM, Lowe CR, Mirra AP, Ravnihar B, et al. Age at first birth and breast cancer risk. Bull World Health Organ. 1970;43:209–21.PubMed MacMahon B, Cole P, Lin TM, Lowe CR, Mirra AP, Ravnihar B, et al. Age at first birth and breast cancer risk. Bull World Health Organ. 1970;43:209–21.PubMed
9.
go back to reference Hinkula M, Pukkala E, Kyyrönen P, Kauppila A. Grand multiparity and the risk of breast cancer: population-based study in Finland. Cancer Causes Control. 2001;12:491–500.PubMedCrossRef Hinkula M, Pukkala E, Kyyrönen P, Kauppila A. Grand multiparity and the risk of breast cancer: population-based study in Finland. Cancer Causes Control. 2001;12:491–500.PubMedCrossRef
10.
go back to reference Ma H, Henderson KD, Sullivan-Halley J, Duan L, Marshall SF, Ursin G, et al. Pregnancy-related factors and the risk of breast carcinoma in situ and invasive breast cancer among postmenopausal women in the California Teachers Study cohort. Breast Cancer Res. 2010;12:R35.PubMedCrossRef Ma H, Henderson KD, Sullivan-Halley J, Duan L, Marshall SF, Ursin G, et al. Pregnancy-related factors and the risk of breast carcinoma in situ and invasive breast cancer among postmenopausal women in the California Teachers Study cohort. Breast Cancer Res. 2010;12:R35.PubMedCrossRef
11.
go back to reference Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Wactawski-Wende J, Kuller LH, et al. Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst. 2011;103:1–8.CrossRef Phipps AI, Chlebowski RT, Prentice R, McTiernan A, Wactawski-Wende J, Kuller LH, et al. Reproductive history and oral contraceptive use in relation to risk of triple-negative breast cancer. J Natl Cancer Inst. 2011;103:1–8.CrossRef
12.
go back to reference Toniolo P, Grankvist K, Wulff M, Chen T, Johansson R, Schock H, et al. Human chorionic gonadotropin in pregnancy and maternal risk of breast cancer. Cancer Res. 2010;70:6779–86.PubMedCrossRef Toniolo P, Grankvist K, Wulff M, Chen T, Johansson R, Schock H, et al. Human chorionic gonadotropin in pregnancy and maternal risk of breast cancer. Cancer Res. 2010;70:6779–86.PubMedCrossRef
13.
go back to reference Mustacchi P. Ramazzini and Rigoni-Stern on parity and breast cancer. Clinical impression and statistical corroboration. Arch Intern Med. 1961;108:639–42.PubMed Mustacchi P. Ramazzini and Rigoni-Stern on parity and breast cancer. Clinical impression and statistical corroboration. Arch Intern Med. 1961;108:639–42.PubMed
14.
go back to reference Kroman N, Mouridsen HT. Prognostic influence of pregnancy before, around, and after diagnosis of breast cancer. Breast. 2003;12:516–21.PubMedCrossRef Kroman N, Mouridsen HT. Prognostic influence of pregnancy before, around, and after diagnosis of breast cancer. Breast. 2003;12:516–21.PubMedCrossRef
15.
go back to reference Kroman N, Melbye M, Mouridsen HT. Prognostic influence of age at diagnosis in premenopausal breast cancer patients. Scand J Surg. 2002;91:305–8.PubMed Kroman N, Melbye M, Mouridsen HT. Prognostic influence of age at diagnosis in premenopausal breast cancer patients. Scand J Surg. 2002;91:305–8.PubMed
16.
go back to reference Brinton LA, Sherman ME, Carreon JD, Anderson WF. Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst. 2008;100:1643–8.PubMedCrossRef Brinton LA, Sherman ME, Carreon JD, Anderson WF. Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst. 2008;100:1643–8.PubMedCrossRef
17.
go back to reference Downs JL, Wise PM. The role of the brain in female reproductive aging. Mol Cell Endocrinol. 2009;299:32–8.PubMedCrossRef Downs JL, Wise PM. The role of the brain in female reproductive aging. Mol Cell Endocrinol. 2009;299:32–8.PubMedCrossRef
18.
go back to reference Russo IH, Medado J, Russo J. Endocrine influences on mammary gland structure and development. In: Jones TC, Mohr U, Hunt RD, editors. Integument and mammary gland of laboratory animals. Berlin: Springer Verlag; 1989. p. 252–66. Russo IH, Medado J, Russo J. Endocrine influences on mammary gland structure and development. In: Jones TC, Mohr U, Hunt RD, editors. Integument and mammary gland of laboratory animals. Berlin: Springer Verlag; 1989. p. 252–66.
19.
go back to reference Chen T, Lundin E, Grankvist K, Zeleniuch-Jacquotte A, Wulff M, Afanasyeva Y, et al. Maternal hormones during early pregnancy: a cross-sectional study. Cancer Causes Control. 2010;21:719–27.PubMedCrossRef Chen T, Lundin E, Grankvist K, Zeleniuch-Jacquotte A, Wulff M, Afanasyeva Y, et al. Maternal hormones during early pregnancy: a cross-sectional study. Cancer Causes Control. 2010;21:719–27.PubMedCrossRef
20.
go back to reference Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment with illustrative cases. Lancet. 1896;2:104.CrossRef Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment with illustrative cases. Lancet. 1896;2:104.CrossRef
21.
go back to reference Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. Steroid Biochem Mol Biol. 2006;102:89–96.CrossRef Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. Steroid Biochem Mol Biol. 2006;102:89–96.CrossRef
22.
go back to reference Russo J, Russo IH, editors. Molecular basis of breast cancer: prevention and treatment. Berlin: Springer Verlag; 2004. Russo J, Russo IH, editors. Molecular basis of breast cancer: prevention and treatment. Berlin: Springer Verlag; 2004.
23.
go back to reference Lukanova A, Surcel HM, Lundin E, Kaasila M, Lakso HA, Schock H, et al. Circulating estrogens and progesterone during primiparous. pregnancies and risk of maternal breast cancer. Int J Cancer 2011; March16: 000:000–000. Lukanova A, Surcel HM, Lundin E, Kaasila M, Lakso HA, Schock H, et al. Circulating estrogens and progesterone during primiparous. pregnancies and risk of maternal breast cancer. Int J Cancer 2011; March16: 000:000–000.
24.
go back to reference Albrektsen G, Heuch I, Thoresen S, Kvale G. Clinical stage of breast cancer by parity, age at birth, and time since birth: a progressive effect of pregnancy hormones? Cancer Epidemiol Biomarkers Prev. 2006;15:65–9.PubMedCrossRef Albrektsen G, Heuch I, Thoresen S, Kvale G. Clinical stage of breast cancer by parity, age at birth, and time since birth: a progressive effect of pregnancy hormones? Cancer Epidemiol Biomarkers Prev. 2006;15:65–9.PubMedCrossRef
25.
go back to reference Russo IH, Koszalka M, Gimotty PA, Russo J. Protective effect of chorionic gonadotropin on DMBA-induced mammary carcinogenesis. Br J Cancer. 1990;62:243–7.PubMedCrossRef Russo IH, Koszalka M, Gimotty PA, Russo J. Protective effect of chorionic gonadotropin on DMBA-induced mammary carcinogenesis. Br J Cancer. 1990;62:243–7.PubMedCrossRef
26.
go back to reference Russo IH, Koszalka M, Russo J. Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer. 1991;64:481–4.PubMedCrossRef Russo IH, Koszalka M, Russo J. Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer. 1991;64:481–4.PubMedCrossRef
27.
go back to reference Russo J, Russo IH. Susceptibility of the mammary gland to carcinogenesis. II. Pregnancy interruption as a risk factor in tumor incidence. Am J Pathol. 1980;100:497–512.PubMed Russo J, Russo IH. Susceptibility of the mammary gland to carcinogenesis. II. Pregnancy interruption as a risk factor in tumor incidence. Am J Pathol. 1980;100:497–512.PubMed
28.
go back to reference Russo J, Tay LK, Ciocca D, Russo IH. Molecular and cellular basis of the mammary gland susceptibility to carcinogenesis. Environ Health Perspect. 1983;49:185–99.PubMedCrossRef Russo J, Tay LK, Ciocca D, Russo IH. Molecular and cellular basis of the mammary gland susceptibility to carcinogenesis. Environ Health Perspect. 1983;49:185–99.PubMedCrossRef
29.
go back to reference Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: A review and tribute to Charles Brenton Huggins. Cancer Res. 1985;45:3415–43.PubMed Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: A review and tribute to Charles Brenton Huggins. Cancer Res. 1985;45:3415–43.PubMed
30.
go back to reference Russo IH, Russo J. Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect. 1996;104:938–67.PubMedCrossRef Russo IH, Russo J. Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect. 1996;104:938–67.PubMedCrossRef
31.
go back to reference McCormick GM, Moon RC. Effect of nursing and litter size on growth of 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumors. Br J Cancer. 1967;21:586–91.PubMedCrossRef McCormick GM, Moon RC. Effect of nursing and litter size on growth of 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumors. Br J Cancer. 1967;21:586–91.PubMedCrossRef
32.
go back to reference Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson JA, Khan G, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25:741–8.PubMedCrossRef Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson JA, Khan G, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25:741–8.PubMedCrossRef
33.
go back to reference Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, et al. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res. 2006;66:6421–31.PubMedCrossRef Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, et al. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res. 2006;66:6421–31.PubMedCrossRef
34.
go back to reference Lakshmanaswamy R, Guzman RC, Nandi S. Hormonal prevention of breast cancer: significance of promotional environment. Adv Exp Med Biol. 2008;617:469–75.PubMedCrossRef Lakshmanaswamy R, Guzman RC, Nandi S. Hormonal prevention of breast cancer: significance of promotional environment. Adv Exp Med Biol. 2008;617:469–75.PubMedCrossRef
35.
go back to reference Medina D, Smith GH. Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst. 1999;91:967–69.PubMedCrossRef Medina D, Smith GH. Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst. 1999;91:967–69.PubMedCrossRef
36.
go back to reference Medina D, Kittrell FS. p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res. 2003;63:6140–3.PubMed Medina D, Kittrell FS. p53 function is required for hormone-mediated protection of mouse mammary tumorigenesis. Cancer Res. 2003;63:6140–3.PubMed
37.
go back to reference Medina D. Chemical carcinogenesis of rat and mouse mammary glands. Breast Dis. 2007;28:63–8.PubMed Medina D. Chemical carcinogenesis of rat and mouse mammary glands. Breast Dis. 2007;28:63–8.PubMed
38.
go back to reference Medina D. Premalignant and malignant mammary lesions induced by MMTV and chemical carcinogens. J Mammary Gland Biol Neoplasia. 2008;13:271–7.PubMedCrossRef Medina D. Premalignant and malignant mammary lesions induced by MMTV and chemical carcinogens. J Mammary Gland Biol Neoplasia. 2008;13:271–7.PubMedCrossRef
39.
go back to reference Shen Q, Brown PH. Transgenic mouse models for the prevention of breast cancer. Mutat Res. 2005;576:93–110.PubMed Shen Q, Brown PH. Transgenic mouse models for the prevention of breast cancer. Mutat Res. 2005;576:93–110.PubMed
40.
go back to reference Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D. Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse models. Breast Cancer Res. 2007;9:R12.PubMedCrossRef Rajkumar L, Kittrell FS, Guzman RC, Brown PH, Nandi S, Medina D. Hormone-induced protection of mammary tumorigenesis in genetically engineered mouse models. Breast Cancer Res. 2007;9:R12.PubMedCrossRef
41.
go back to reference Allred DC, Medina D. The relevance of mouse models to understanding the development and progression of human breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:279–88.PubMedCrossRef Allred DC, Medina D. The relevance of mouse models to understanding the development and progression of human breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:279–88.PubMedCrossRef
42.
go back to reference Borowsky AD. Choosing a mouse model: Experimental biology in context—The utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol 2011. Borowsky AD. Choosing a mouse model: Experimental biology in context—The utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol 2011.
43.
go back to reference Medina D, Kittrell FS, Hill J, Shepard A, Thordarson G, Brown P. Tamoxifen inhibition of estrogen receptor-alpha-negative mouse mammary tumorigenesis. Cancer Res. 2005;65:3493–6.PubMed Medina D, Kittrell FS, Hill J, Shepard A, Thordarson G, Brown P. Tamoxifen inhibition of estrogen receptor-alpha-negative mouse mammary tumorigenesis. Cancer Res. 2005;65:3493–6.PubMed
44.
go back to reference Rao GN, Piegorsch WW, Haseman JK. Influence of body weight on the incidence of spontaneous tumors in rats and mice of long term studies. Am J Clin Nutr. 1987;45:252–60.PubMed Rao GN, Piegorsch WW, Haseman JK. Influence of body weight on the incidence of spontaneous tumors in rats and mice of long term studies. Am J Clin Nutr. 1987;45:252–60.PubMed
45.
go back to reference Tarone RE, Chu KC, Ward JM. Variability in the rates of some common naturally occurring tumors in Fischer 344 rats and (C57BLU6N x C3/HeN) F1 (B6C3F,) mice. J Natl Cancer Inst. 1981;66:1175–81.PubMed Tarone RE, Chu KC, Ward JM. Variability in the rates of some common naturally occurring tumors in Fischer 344 rats and (C57BLU6N x C3/HeN) F1 (B6C3F,) mice. J Natl Cancer Inst. 1981;66:1175–81.PubMed
46.
go back to reference Huggins C, Briziarelli G, Sutton H. Rapid induction of mammary carcinoma in the rat and the influence of hormones on the tumors. J Exp Med. 1959;709:25–42.CrossRef Huggins C, Briziarelli G, Sutton H. Rapid induction of mammary carcinoma in the rat and the influence of hormones on the tumors. J Exp Med. 1959;709:25–42.CrossRef
47.
go back to reference Huggins C, Grand L, Fukunishi R. Aromatic influences in the yields of mammary cancers following administration of 7,12-dimethylbenzanthracene. Proc Natl Acad Sci USA. 1964;57:737–42.CrossRef Huggins C, Grand L, Fukunishi R. Aromatic influences in the yields of mammary cancers following administration of 7,12-dimethylbenzanthracene. Proc Natl Acad Sci USA. 1964;57:737–42.CrossRef
48.
go back to reference Gullino PM, Pettigrew HM, Grantham FH. N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst. 1975;54:401–14.PubMed Gullino PM, Pettigrew HM, Grantham FH. N-nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst. 1975;54:401–14.PubMed
49.
go back to reference Thordarson G, Lee AV, McCarty M, Van Horn K, Chu O, Chou YC, et al. Growth and characterization of N-methyl-N-nitrosourea-induced mammary tumors in intact and ovariectomized rats. Carcinogenesis. 2001;22:2039–47.PubMedCrossRef Thordarson G, Lee AV, McCarty M, Van Horn K, Chu O, Chou YC, et al. Growth and characterization of N-methyl-N-nitrosourea-induced mammary tumors in intact and ovariectomized rats. Carcinogenesis. 2001;22:2039–47.PubMedCrossRef
50.
go back to reference Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, Van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Invest. 1990;62:1–32. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, Van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Invest. 1990;62:1–32.
51.
go back to reference Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J. Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol 2008;196:101–12. Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J. Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol 2008;196:101–12.
52.
go back to reference Kawaguchi H, Miyoshi N, Miyamoto Y, Souda M, Umekita Y, Yasuda N, et al. Effects of fetal exposure to diethylstilbestrol on mammary tumorigenesis in rats. Vet Med Sci. 2009;71:1599–608.CrossRef Kawaguchi H, Miyoshi N, Miyamoto Y, Souda M, Umekita Y, Yasuda N, et al. Effects of fetal exposure to diethylstilbestrol on mammary tumorigenesis in rats. Vet Med Sci. 2009;71:1599–608.CrossRef
53.
go back to reference Umekita Y, Souda M, Hatanaka K, Hamada T, Yoshioka T, Kawaguchi H, et al. Gene expression profile of terminal end buds in rat mammary glands exposed to diethylstilbestrol in neonatal period. Toxicol Lett 2011;205:15–25. Umekita Y, Souda M, Hatanaka K, Hamada T, Yoshioka T, Kawaguchi H, et al. Gene expression profile of terminal end buds in rat mammary glands exposed to diethylstilbestrol in neonatal period. Toxicol Lett 2011;205:15–25.
54.
go back to reference Goodman A, Schorge J, Greene MF. The long-term effects of in utero exposures—the DES story. N Engl J Med. 2011;364:2083–4.PubMedCrossRef Goodman A, Schorge J, Greene MF. The long-term effects of in utero exposures—the DES story. N Engl J Med. 2011;364:2083–4.PubMedCrossRef
55.
go back to reference Russo IH, Russo J. Primary prevention of breast cancer by hormone-induced differentiation. Recent Results Cancer Res. 2007;174:111–30.PubMedCrossRef Russo IH, Russo J. Primary prevention of breast cancer by hormone-induced differentiation. Recent Results Cancer Res. 2007;174:111–30.PubMedCrossRef
56.
go back to reference Russo J, Tait L, Russo IH. Susceptibility of the mammary gland to carcinogenesis: III the cell of origin of rat mammary carcinoma. Am J Path. 1983;113:50–66.PubMed Russo J, Tait L, Russo IH. Susceptibility of the mammary gland to carcinogenesis: III the cell of origin of rat mammary carcinoma. Am J Path. 1983;113:50–66.PubMed
57.
go back to reference Russo J, Balogh GA, Chen J, Fernandez SV, Fernbaugh R, Heulings R, et al. The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci. 2006;11:151–72.PubMedCrossRef Russo J, Balogh GA, Chen J, Fernandez SV, Fernbaugh R, Heulings R, et al. The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Front Biosci. 2006;11:151–72.PubMedCrossRef
58.
go back to reference Bennett DC, Peachey LA, Durbin H, Rudland PS. A possible mammary stem cell line. Cell. 1978;15:283–98.PubMedCrossRef Bennett DC, Peachey LA, Durbin H, Rudland PS. A possible mammary stem cell line. Cell. 1978;15:283–98.PubMedCrossRef
59.
go back to reference Bussard KM, Smith GH. The mammary gland microenvironment directs progenitor cell fate in vivo. Int J Cell Biol. 2011;2011:451676.PubMed Bussard KM, Smith GH. The mammary gland microenvironment directs progenitor cell fate in vivo. Int J Cell Biol. 2011;2011:451676.PubMed
60.
go back to reference Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor GPR54 in rat hypothalamus and potent LH releasing activity of KiSS-1 peptide. Endocrinology. 2004;145:4565–74.PubMedCrossRef Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor GPR54 in rat hypothalamus and potent LH releasing activity of KiSS-1 peptide. Endocrinology. 2004;145:4565–74.PubMedCrossRef
61.
go back to reference Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology. 2005;146:4431–6.PubMedCrossRef Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology. 2005;146:4431–6.PubMedCrossRef
62.
go back to reference Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mam Gland Biology Neoplasia. 1998;3:49–61.CrossRef Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mam Gland Biology Neoplasia. 1998;3:49–61.CrossRef
63.
go back to reference Russo IH, Frederick J, Russo J. Hormone prevention of mammary carcinogenesis by norethynodrel-mestranol. Breast Cancer Res Treat. 1989;14:43–56.PubMedCrossRef Russo IH, Frederick J, Russo J. Hormone prevention of mammary carcinogenesis by norethynodrel-mestranol. Breast Cancer Res Treat. 1989;14:43–56.PubMedCrossRef
64.
go back to reference Vanegas JE, Kocdor M, Pereira JS, Kocdor H, Russo J, Snider K, et al. Preventive effect of hCG on rat mammary carcinogenesis. Proc Am Assoc Cancer Res 2009. Vanegas JE, Kocdor M, Pereira JS, Kocdor H, Russo J, Snider K, et al. Preventive effect of hCG on rat mammary carcinogenesis. Proc Am Assoc Cancer Res 2009.
65.
go back to reference Srivastava P, Russo J, Russo IH. Chorionic gonadotropin inhibits mammary carcinogenesis through activation of programmed cell death. Carcinogenesis. 1997;18:1799–808.PubMedCrossRef Srivastava P, Russo J, Russo IH. Chorionic gonadotropin inhibits mammary carcinogenesis through activation of programmed cell death. Carcinogenesis. 1997;18:1799–808.PubMedCrossRef
66.
go back to reference Srivastava P, Russo J, Russo IH. Inhibition of rat mammary tumorigenesis by human chorionic gonadotropin is associated with increased expression of inhibin. Mol Carcinog. 1999;26:10–9.PubMedCrossRef Srivastava P, Russo J, Russo IH. Inhibition of rat mammary tumorigenesis by human chorionic gonadotropin is associated with increased expression of inhibin. Mol Carcinog. 1999;26:10–9.PubMedCrossRef
67.
go back to reference Russo IH, Russo J. Chorionic gonadotropin: a tumoristatic and preventive agent in breast cancer. In: Teicher BA, editor. Drug resistance in oncology. New York: Dekker; 1993. p. 537–60. Russo IH, Russo J. Chorionic gonadotropin: a tumoristatic and preventive agent in breast cancer. In: Teicher BA, editor. Drug resistance in oncology. New York: Dekker; 1993. p. 537–60.
68.
go back to reference McCormick GM, Moon RC. Effect of pregnancy and lactation on growth of mammary tumours induced by 7,12-dimethylbenzanthracene (DMBA). Br J Cancer. 1965;79:160–6.CrossRef McCormick GM, Moon RC. Effect of pregnancy and lactation on growth of mammary tumours induced by 7,12-dimethylbenzanthracene (DMBA). Br J Cancer. 1965;79:160–6.CrossRef
69.
go back to reference Dao TL, Sunderland H. Mammary carcinogenesis by 3-methylcholanthrene. I. Hormonal aspects in tumor induction and growth. J Natl Cancer Inst. 1959;23:567–85.PubMed Dao TL, Sunderland H. Mammary carcinogenesis by 3-methylcholanthrene. I. Hormonal aspects in tumor induction and growth. J Natl Cancer Inst. 1959;23:567–85.PubMed
70.
go back to reference Grubbs CJ, Hill DL, McDonough KC, Peckham JC. N-Nitroso-N-methylurea-induced mammary carcinogenesis: effect of pregnancy on preneoplastic cells. J Natl Cancer Inst. 1983;71:625–8.PubMed Grubbs CJ, Hill DL, McDonough KC, Peckham JC. N-Nitroso-N-methylurea-induced mammary carcinogenesis: effect of pregnancy on preneoplastic cells. J Natl Cancer Inst. 1983;71:625–8.PubMed
71.
go back to reference Jordan VC. Effect of tamoxifen (ICI 46,474) on the initiation and growth of DMBA-induced rat mammary carcinoma. Eur J Cancer. 1976;12:419–24.PubMed Jordan VC. Effect of tamoxifen (ICI 46,474) on the initiation and growth of DMBA-induced rat mammary carcinoma. Eur J Cancer. 1976;12:419–24.PubMed
72.
go back to reference Weroha SJ, Li SA, Tawfik O, Li JJ. Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis. 2006;27:491–8.PubMedCrossRef Weroha SJ, Li SA, Tawfik O, Li JJ. Overexpression of cyclins D1 and D3 during estrogen-induced breast oncogenesis in female ACI rats. Carcinogenesis. 2006;27:491–8.PubMedCrossRef
73.
go back to reference Li SA, Weroha SJ, Tawfik O, Li JJ. Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: evidence for estrogen receptor mediation. J Endocrinol. 2002;175:297–305.PubMedCrossRef Li SA, Weroha SJ, Tawfik O, Li JJ. Prevention of solely estrogen-induced mammary tumors in female aci rats by tamoxifen: evidence for estrogen receptor mediation. J Endocrinol. 2002;175:297–305.PubMedCrossRef
74.
go back to reference Russo J, Fernandez SV, Russo PA, Fernbaugh R, Sheriff FS, Lareef HM, et al. 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J. 2006;20:1622–34.PubMedCrossRef Russo J, Fernandez SV, Russo PA, Fernbaugh R, Sheriff FS, Lareef HM, et al. 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J. 2006;20:1622–34.PubMedCrossRef
75.
go back to reference Russo IH, Gimotty P, Dupuis M, Russo J. Effect of medroxyprogesterone acetate on the response of the rat mammary gland to carcinogenesis. Br J Cancer. 1989;59:210–6.PubMedCrossRef Russo IH, Gimotty P, Dupuis M, Russo J. Effect of medroxyprogesterone acetate on the response of the rat mammary gland to carcinogenesis. Br J Cancer. 1989;59:210–6.PubMedCrossRef
76.
go back to reference Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati R, Bottino MC, et al. The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer. 2009;16:333–50.PubMedCrossRef Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati R, Bottino MC, et al. The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer. 2009;16:333–50.PubMedCrossRef
77.
go back to reference Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, et al. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev. 2006;15:306–42.PubMedCrossRef Russo J, Balogh GA, Heulings R, Mailo DA, Moral R, Russo PA, et al. Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev. 2006;15:306–42.PubMedCrossRef
78.
go back to reference Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129:1377–86.PubMed Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129:1377–86.PubMed
79.
go back to reference Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta 1 expression. Oncogene. 2005;24:552–60.PubMedCrossRef Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta 1 expression. Oncogene. 2005;24:552–60.PubMedCrossRef
80.
go back to reference Booth BW, Boulanger CA, Smith GH. Selective segregation of DNA strands persists in long-label-retaining mammary cells during pregnancy. Breast Cancer Res. 2008;10:R90.PubMedCrossRef Booth BW, Boulanger CA, Smith GH. Selective segregation of DNA strands persists in long-label-retaining mammary cells during pregnancy. Breast Cancer Res. 2008;10:R90.PubMedCrossRef
81.
go back to reference Blackshaw S, Scholpp S, Placzek M, Ingraham H, Simerly R, Shimogori T. Molecular pathways controlling development of thalamus and hypothalamus: from neural specification to circuit formation. J Neurosci. 2010;30:14925–30.PubMedCrossRef Blackshaw S, Scholpp S, Placzek M, Ingraham H, Simerly R, Shimogori T. Molecular pathways controlling development of thalamus and hypothalamus: from neural specification to circuit formation. J Neurosci. 2010;30:14925–30.PubMedCrossRef
82.
go back to reference Hendriks AE, Lavens JS, Valkenburg O, Fong SL, Fauser BC, de Ridder MA, et al. Fertility and ovarian function in high-dose estrogen-treated tall women. J Clin Endocrinol Metab. 2011;96:1098–105.PubMedCrossRef Hendriks AE, Lavens JS, Valkenburg O, Fong SL, Fauser BC, de Ridder MA, et al. Fertility and ovarian function in high-dose estrogen-treated tall women. J Clin Endocrinol Metab. 2011;96:1098–105.PubMedCrossRef
83.
go back to reference Russo J, Russo IH. Development of human mammary gland. In: Neville MC, Daniel C, editors. The mammary gland development, regulation and function. New York: Plenum; 1987. p. 67–93. Russo J, Russo IH. Development of human mammary gland. In: Neville MC, Daniel C, editors. The mammary gland development, regulation and function. New York: Plenum; 1987. p. 67–93.
84.
go back to reference Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat. 1992;23:211–8.PubMedCrossRef Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat. 1992;23:211–8.PubMedCrossRef
85.
go back to reference Howell A, Evans GD. Hormone replacement therapy and breast cancer. Recent Results Cancer Res. 2011;188:115–24.PubMedCrossRef Howell A, Evans GD. Hormone replacement therapy and breast cancer. Recent Results Cancer Res. 2011;188:115–24.PubMedCrossRef
86.
go back to reference Lathi RB, Fisher SJ, Giudice LC. Implantation and placental physiology in early human pregnancy: the role of the maternal decidua and the trophoblast. In: De Groot L, Jameson LJ, editors. Endocrinology. Philadelphia: Elsevier; 2006. p. 3341–51. Lathi RB, Fisher SJ, Giudice LC. Implantation and placental physiology in early human pregnancy: the role of the maternal decidua and the trophoblast. In: De Groot L, Jameson LJ, editors. Endocrinology. Philadelphia: Elsevier; 2006. p. 3341–51.
87.
go back to reference Parry S, Strauss III F. Placental hormones. In: De Groot L, Jameson LJ, editors. Endocrinology. Philadelphia: Elsevier; 2006. p. 3353–67. Parry S, Strauss III F. Placental hormones. In: De Groot L, Jameson LJ, editors. Endocrinology. Philadelphia: Elsevier; 2006. p. 3353–67.
88.
go back to reference Alvarado MV, Ho T-Y, Russo J, Russo IH. Human chorionic gonadotropin regulates the synthesis of inhibin in the ovary and the mammary gland of rats. Endocrine. 1994;2:1–10. Alvarado MV, Ho T-Y, Russo J, Russo IH. Human chorionic gonadotropin regulates the synthesis of inhibin in the ovary and the mammary gland of rats. Endocrine. 1994;2:1–10.
89.
go back to reference Alvarado ME, Alvarado NE, Russo J, Russo IH. Human chorionic gonadotropin inhibits proliferation and induces expression of inhibin in human breast epithelial cells in vitro. In Vitro. 1994;30A:4–8. Alvarado ME, Alvarado NE, Russo J, Russo IH. Human chorionic gonadotropin inhibits proliferation and induces expression of inhibin in human breast epithelial cells in vitro. In Vitro. 1994;30A:4–8.
90.
go back to reference Horikoshi Y, Matsumoto H, Takatsu Y, Ohtaki T, Kitada C, Usuki S, et al. Dramatic Elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab. 2003;88:914–9.PubMedCrossRef Horikoshi Y, Matsumoto H, Takatsu Y, Ohtaki T, Kitada C, Usuki S, et al. Dramatic Elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab. 2003;88:914–9.PubMedCrossRef
91.
go back to reference McGregor, Land CE, Choi K, Tokuoka S, Liu PI, Wakabayashi I, et al. Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagaski 1950–1989. J Natl Cancer Inst. 1977;59:799–811.PubMed McGregor, Land CE, Choi K, Tokuoka S, Liu PI, Wakabayashi I, et al. Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagaski 1950–1989. J Natl Cancer Inst. 1977;59:799–811.PubMed
92.
go back to reference Cutuli B, Borel C, Dhermain F, Magrini SM, Wasserman TH, Bogart JA, et al. Breast cancer occurred after treatment for Hodgkin's disease: analysis of 133 cases. Radiother Oncol. 2001;59:247–55.PubMedCrossRef Cutuli B, Borel C, Dhermain F, Magrini SM, Wasserman TH, Bogart JA, et al. Breast cancer occurred after treatment for Hodgkin's disease: analysis of 133 cases. Radiother Oncol. 2001;59:247–55.PubMedCrossRef
93.
go back to reference Johnson KC, Miller AB, Collishaw NE, Palmer JR, Hammond SK, Salmon AG, et al. Active smoking and secondhand smoke increase breast cancer risk: the report of the Canadian expert panel on tobacco smoke and breast cancer risk (2009). Tob Control. 2011;20:e2.PubMedCrossRef Johnson KC, Miller AB, Collishaw NE, Palmer JR, Hammond SK, Salmon AG, et al. Active smoking and secondhand smoke increase breast cancer risk: the report of the Canadian expert panel on tobacco smoke and breast cancer risk (2009). Tob Control. 2011;20:e2.PubMedCrossRef
94.
go back to reference Johansson AL, Andersson TM, Hsieh CC, Cnattingius S, Lambe M. Increased mortality in women with breast cancer detected during pregnancy and different periods postpartum. Cancer Epidemiol Biomarkers Prev. 2011. Johansson AL, Andersson TM, Hsieh CC, Cnattingius S, Lambe M. Increased mortality in women with breast cancer detected during pregnancy and different periods postpartum. Cancer Epidemiol Biomarkers Prev. 2011.
95.
go back to reference Hahn RA, Moolgavkar SH. Nulliparity, decade of first birth, and breast cancer in Connecticut cohorts, 1855 to 1945: an ecological study. Am J Public Health. 1989;79:1503–7.PubMedCrossRef Hahn RA, Moolgavkar SH. Nulliparity, decade of first birth, and breast cancer in Connecticut cohorts, 1855 to 1945: an ecological study. Am J Public Health. 1989;79:1503–7.PubMedCrossRef
96.
go back to reference Mathews TJ, Hamilton BE. Delayed childbearing: more women are having their first child later in life. NCHS data brief, No. 21. Hyattaville: National Center for Health Statistics; 2009. Mathews TJ, Hamilton BE. Delayed childbearing: more women are having their first child later in life. NCHS data brief, No. 21. Hyattaville: National Center for Health Statistics; 2009.
97.
go back to reference Balogh GA, Heulings R, Mailo DA, Russo PA, Sheriff F, Russo IH, et al. Genomic signature induced by pregnancy in the human breast. Int J Oncol. 2006;28:399–410.PubMed Balogh GA, Heulings R, Mailo DA, Russo PA, Sheriff F, Russo IH, et al. Genomic signature induced by pregnancy in the human breast. Int J Oncol. 2006;28:399–410.PubMed
98.
go back to reference Russo J, Balogh GA, Russo IH. Full-term pregnancy induces a specific genomic signature in the human breast. Cancer Epidemiol. Biomarkers Prev. 2008;17:51–66.CrossRef Russo J, Balogh GA, Russo IH. Full-term pregnancy induces a specific genomic signature in the human breast. Cancer Epidemiol. Biomarkers Prev. 2008;17:51–66.CrossRef
100.
go back to reference Homan GF, Davies M, Norman R. The impact of lifestyles factors on reproductive performance in the general population and those undergoing infertility treatment. Hum Reprod Update. 2007;13:209–23.PubMedCrossRef Homan GF, Davies M, Norman R. The impact of lifestyles factors on reproductive performance in the general population and those undergoing infertility treatment. Hum Reprod Update. 2007;13:209–23.PubMedCrossRef
101.
go back to reference Gleicher N, Weghofer A, Barad DH. Defining ovarian reserve to better understand ovarian aging. Reprod Biol Endocrinol. 2011;9:23.PubMedCrossRef Gleicher N, Weghofer A, Barad DH. Defining ovarian reserve to better understand ovarian aging. Reprod Biol Endocrinol. 2011;9:23.PubMedCrossRef
102.
go back to reference Wise PM, Smith MJ, Dubal DB, Wilson ME, Rau SW, Cashion AB, et al. Neuroendocrine modulation and repercussions of female reproductive aging. Recent Prog Horm Res. 2002;57:235–56.PubMedCrossRef Wise PM, Smith MJ, Dubal DB, Wilson ME, Rau SW, Cashion AB, et al. Neuroendocrine modulation and repercussions of female reproductive aging. Recent Prog Horm Res. 2002;57:235–56.PubMedCrossRef
103.
go back to reference Danforth DR, Arbogast LK, Mroueh J, Kim MH, Kennard EA, Seifer DB, et al. Dimeric inhibin: a direct marker of ovarian ageing. Fertil Steril. 1998;70:119–23.PubMedCrossRef Danforth DR, Arbogast LK, Mroueh J, Kim MH, Kennard EA, Seifer DB, et al. Dimeric inhibin: a direct marker of ovarian ageing. Fertil Steril. 1998;70:119–23.PubMedCrossRef
104.
go back to reference Rance NE. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides. 2009;30:111–22.PubMedCrossRef Rance NE. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides. 2009;30:111–22.PubMedCrossRef
Metadata
Title
Pregnancy-Induced Changes in Breast Cancer Risk
Authors
Irma H. Russo
Jose Russo
Publication date
01-09-2011
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 3/2011
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-011-9228-y

Other articles of this Issue 3/2011

Journal of Mammary Gland Biology and Neoplasia 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine