Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 2-3/2007

01-09-2007

Modeling Migration and Metastasis in Drosophila

Authors: Anna C.-C. Jang, Michelle Starz-Gaiano, Denise J. Montell

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 2-3/2007

Login to get access

Abstract

Cell motility makes essential contributions to normal embryonic development and homeostasis. It is also thought to contribute in important ways to tumor metastasis. Because of this dual importance, cell migration has been extensively studied. The fruit fly Drosophila melanogaster has served as an important model organism for genetic analysis of many aspects of developmental biology, including cell migration. Here we describe the various types of cell movements that have been studied in detail, which represent models for epithelial-to-mesenchymal transition, transepithelial migration, inflammation, wound healing and invasion. We summarize what has been learned about the molecular control of cell migration from genetic studies in the fly. In addition, we describe recent efforts to model tumor metastasis directly in Drosophila by expressing oncogenes and/or mutating tumor suppressor genes. Together these studies suggest that Drosophila has much to offer as a model for varied aspects of tumor metastasis.
Literature
1.
go back to reference Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12 8:895–904.PubMedCrossRef Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12 8:895–904.PubMedCrossRef
2.
go back to reference Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980;287 5785:795–801.PubMedCrossRef Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980;287 5785:795–801.PubMedCrossRef
3.
go back to reference Evangelista M, Tian H, de Sauvage FJ. The hedgehog signaling pathway in cancer. Clin Cancer Res 2006;12 20 Pt 1:5924–8.PubMedCrossRef Evangelista M, Tian H, de Sauvage FJ. The hedgehog signaling pathway in cancer. Clin Cancer Res 2006;12 20 Pt 1:5924–8.PubMedCrossRef
4.
go back to reference Leptin M, Grunewald B. Cell shape changes during gastrulation in Drosophila. Development 1990;110 1:73–84.PubMed Leptin M, Grunewald B. Cell shape changes during gastrulation in Drosophila. Development 1990;110 1:73–84.PubMed
5.
go back to reference Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res 2006;66 9:4549–52.PubMedCrossRef Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res 2006;66 9:4549–52.PubMedCrossRef
6.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003;15 6:740–6.PubMedCrossRef Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003;15 6:740–6.PubMedCrossRef
7.
go back to reference Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005;17 5:548–58.PubMedCrossRef Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005;17 5:548–58.PubMedCrossRef
8.
go back to reference Gryzik T, Muller HA. FGF8-like1 and FGF8-like2 encode putative ligands of the FGF receptor Htl and are required for mesoderm migration in the Drosophila gastrula. Curr Biol 2004;14 8:659–67.PubMedCrossRef Gryzik T, Muller HA. FGF8-like1 and FGF8-like2 encode putative ligands of the FGF receptor Htl and are required for mesoderm migration in the Drosophila gastrula. Curr Biol 2004;14 8:659–67.PubMedCrossRef
9.
go back to reference Stathopoulos A, Tam B, Ronshaugen M, Frasch M, Levine M. Pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 2004;18 6:687–99.PubMedCrossRef Stathopoulos A, Tam B, Ronshaugen M, Frasch M, Levine M. Pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 2004;18 6:687–99.PubMedCrossRef
10.
go back to reference Kunwar PS, Starz-Gaiano M, Bainton RJ, Heberlein U, Lehmann R. Tre1, a g protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biol 2003;1 3:E80.PubMedCrossRef Kunwar PS, Starz-Gaiano M, Bainton RJ, Heberlein U, Lehmann R. Tre1, a g protein-coupled receptor, directs transepithelial migration of Drosophila germ cells. PLoS Biol 2003;1 3:E80.PubMedCrossRef
11.
go back to reference Renault AD, Sigal YJ, Morris AJ, Lehmann R. Soma-germ line competition for lipid phosphate uptake regulates germ cell migration and survival. Science 2004;305 5692:1963–6.PubMedCrossRef Renault AD, Sigal YJ, Morris AJ, Lehmann R. Soma-germ line competition for lipid phosphate uptake regulates germ cell migration and survival. Science 2004;305 5692:1963–6.PubMedCrossRef
12.
go back to reference Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science 1999;284 5420:1635–9.PubMedCrossRef Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science 1999;284 5420:1635–9.PubMedCrossRef
13.
go back to reference Kerman BE, Cheshire AM, Andrew DJ. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation 2006;74 7:326–48.PubMedCrossRef Kerman BE, Cheshire AM, Andrew DJ. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation 2006;74 7:326–48.PubMedCrossRef
14.
go back to reference Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell 2003;4 1:11–8.PubMedCrossRef Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell 2003;4 1:11–8.PubMedCrossRef
15.
go back to reference Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, Perrimon N. The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 2004;7 1:73–84.PubMedCrossRef Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, Perrimon N. The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 2004;7 1:73–84.PubMedCrossRef
16.
go back to reference Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F, et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 2002;108 6:865–76.PubMedCrossRef Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F, et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 2002;108 6:865–76.PubMedCrossRef
17.
go back to reference Wood W, Faria C, Jacinto A. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 2006;173 3:405–16.PubMedCrossRef Wood W, Faria C, Jacinto A. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 2006;173 3:405–16.PubMedCrossRef
18.
go back to reference Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, et al. Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 2005;168 4:567–73.PubMedCrossRef Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, et al. Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 2005;168 4:567–73.PubMedCrossRef
19.
go back to reference Xia Y, Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 2004;14 2:94–101.PubMedCrossRef Xia Y, Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 2004;14 2:94–101.PubMedCrossRef
20.
21.
go back to reference Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 2005;5 5:355–66.PubMedCrossRef Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 2005;5 5:355–66.PubMedCrossRef
22.
go back to reference Silver DL, Geisbrecht ER, Montell DJ. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 2005;132 15:3483–92.PubMedCrossRef Silver DL, Geisbrecht ER, Montell DJ. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 2005;132 15:3483–92.PubMedCrossRef
23.
go back to reference Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 2001;107 7:831–41.PubMedCrossRef Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 2001;107 7:831–41.PubMedCrossRef
24.
25.
go back to reference Montell DJ, Rorth P, Spradling AC. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 1992;71 1:51–62.PubMedCrossRef Montell DJ, Rorth P, Spradling AC. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 1992;71 1:51–62.PubMedCrossRef
26.
go back to reference Wang X, Bo J, Bridges T, Dugan KD, Pan TC, Chodosh LA, et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev Cell 2006;10 4:483–95.PubMedCrossRef Wang X, Bo J, Bridges T, Dugan KD, Pan TC, Chodosh LA, et al. Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev Cell 2006;10 4:483–95.PubMedCrossRef
27.
go back to reference Liu Y, Montell DJ. Identification of mutations that cause cell migration defects in mosaic clones. Development 1999;126 9:1869–78.PubMed Liu Y, Montell DJ. Identification of mutations that cause cell migration defects in mosaic clones. Development 1999;126 9:1869–78.PubMed
28.
go back to reference McDonald JA, Pinheiro EM, Kadlec L, Schupbach T, Montell DJ. Multiple EGFR ligands participate in guiding migrating border cells. Dev Biol 2006;296:94–103.PubMedCrossRef McDonald JA, Pinheiro EM, Kadlec L, Schupbach T, Montell DJ. Multiple EGFR ligands participate in guiding migrating border cells. Dev Biol 2006;296:94–103.PubMedCrossRef
29.
go back to reference McDonald JA, Pinheiro EM, Montell DJ. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 2003;130 15:3469–78.PubMedCrossRef McDonald JA, Pinheiro EM, Montell DJ. PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 2003;130 15:3469–78.PubMedCrossRef
30.
go back to reference Duchek P, Rorth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001;291 5501:131–3.PubMedCrossRef Duchek P, Rorth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001;291 5501:131–3.PubMedCrossRef
31.
go back to reference Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol 2007;19 1:56–62.PubMedCrossRef Ferretti G, Felici A, Papaldo P, Fabi A, Cognetti F. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol 2007;19 1:56–62.PubMedCrossRef
32.
go back to reference Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005;65 12:5278–83.PubMedCrossRef Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005;65 12:5278–83.PubMedCrossRef
33.
go back to reference Xue C, Liang F, Mahmood R, Vuolo M, Wyckoff J, Qian H, et al. ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Res 2006;66 3:1418–26.PubMedCrossRef Xue C, Liang F, Mahmood R, Vuolo M, Wyckoff J, Qian H, et al. ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Res 2006;66 3:1418–26.PubMedCrossRef
34.
go back to reference de Launoit Y, Baert JL, Chotteau-Lelievre A, Monte D, Coutte L, Mauen S, et al. The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. Biochim Biophys Acta 2006;1766 1:79–87.PubMed de Launoit Y, Baert JL, Chotteau-Lelievre A, Monte D, Coutte L, Mauen S, et al. The Ets transcription factors of the PEA3 group: transcriptional regulators in metastasis. Biochim Biophys Acta 2006;1766 1:79–87.PubMed
35.
go back to reference Schober M, Rebay I, Perrimon N. Function of the ETS transcription factor Yan in border cell migration. Development 2005;132 15:3493–504.PubMedCrossRef Schober M, Rebay I, Perrimon N. Function of the ETS transcription factor Yan in border cell migration. Development 2005;132 15:3493–504.PubMedCrossRef
36.
go back to reference Niewiadomska P, Godt D, Tepass U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 1999;144 3:533–47.PubMedCrossRef Niewiadomska P, Godt D, Tepass U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J Cell Biol 1999;144 3:533–47.PubMedCrossRef
37.
go back to reference Bai J, Uehara Y, Montell DJ. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 2000;103 7:1047–58.PubMedCrossRef Bai J, Uehara Y, Montell DJ. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 2000;103 7:1047–58.PubMedCrossRef
38.
go back to reference Pinheiro EM, Montell DJ. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 2004;131 21:5243–51.PubMedCrossRef Pinheiro EM, Montell DJ. Requirement for Par-6 and Bazooka in Drosophila border cell migration. Development 2004;131 21:5243–51.PubMedCrossRef
39.
go back to reference Montell DJ. Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech Dev 2001;105 1–2:19–25.PubMedCrossRef Montell DJ. Command and control: regulatory pathways controlling invasive behavior of the border cells. Mech Dev 2001;105 1–2:19–25.PubMedCrossRef
40.
go back to reference Vleminckx K, Vakaet L, Jr., Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991;66 1:107–19.PubMedCrossRef Vleminckx K, Vakaet L, Jr., Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991;66 1:107–19.PubMedCrossRef
41.
go back to reference Berx G, Cleton-Jansen AM, Strumane K, de Leeuw WJ, Nollet F, van Roy F, et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 1996;13 9:1919–25.PubMed Berx G, Cleton-Jansen AM, Strumane K, de Leeuw WJ, Nollet F, van Roy F, et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 1996;13 9:1919–25.PubMed
42.
go back to reference Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005;17 5:499–508.PubMedCrossRef Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005;17 5:499–508.PubMedCrossRef
43.
go back to reference Geisbrecht ER, Montell DJ. Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 2002;4 8:616–20.PubMed Geisbrecht ER, Montell DJ. Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 2002;4 8:616–20.PubMed
44.
go back to reference Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, et al. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A 2004;101 21:8144–9.PubMedCrossRef Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, et al. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A 2004;101 21:8144–9.PubMedCrossRef
45.
go back to reference Dunn TA, Chen S, Faith DA, Hicks JL, Platz EA, Chen Y, et al. A novel role of myosin VI in human prostate cancer. Am J Pathol 2006;169 5:1843–54.PubMedCrossRef Dunn TA, Chen S, Faith DA, Hicks JL, Platz EA, Chen Y, et al. A novel role of myosin VI in human prostate cancer. Am J Pathol 2006;169 5:1843–54.PubMedCrossRef
46.
go back to reference Carney GE, Bender M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 2000;154 3:1203–11.PubMed Carney GE, Bender M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 2000;154 3:1203–11.PubMed
47.
go back to reference Cherbas L, Hu X, Zhimulev I, Belyaeva E, Cherbas P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 2003;130 2:271–84.PubMedCrossRef Cherbas L, Hu X, Zhimulev I, Belyaeva E, Cherbas P. EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 2003;130 2:271–84.PubMedCrossRef
48.
go back to reference Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res 2006;66 23:11381–8.PubMedCrossRef Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res 2006;66 23:11381–8.PubMedCrossRef
49.
go back to reference Kuang SQ, Liao L, Wang S, Medina D, O’Malley BW, Xu J. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res 2005;65 17:7993–8002.PubMed Kuang SQ, Liao L, Wang S, Medina D, O’Malley BW, Xu J. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res 2005;65 17:7993–8002.PubMed
50.
go back to reference Yoshida H, Liu J, Samuel S, Cheng W, Rosen D, Naora H. Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol Cell Endocrinol 2005;245 1–2:77–85.PubMedCrossRef Yoshida H, Liu J, Samuel S, Cheng W, Rosen D, Naora H. Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol Cell Endocrinol 2005;245 1–2:77–85.PubMedCrossRef
51.
go back to reference Oh A, List HJ, Reiter R, Mani A, Zhang Y, Gehan E, et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res 2004;64 22:8299–308.PubMedCrossRef Oh A, List HJ, Reiter R, Mani A, Zhang Y, Gehan E, et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res 2004;64 22:8299–308.PubMedCrossRef
52.
go back to reference Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev 2007;17 1:52–9.PubMedCrossRef Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev 2007;17 1:52–9.PubMedCrossRef
53.
go back to reference Edenfeld G, Volohonsky G, Krukkert K, Naffin E, Lammel U, Grimm A, et al. The splicing factor crooked neck associates with the RNA-binding protein HOW to control glial cell maturation in Drosophila. Neuron 2006;52 6:969–80.PubMedCrossRef Edenfeld G, Volohonsky G, Krukkert K, Naffin E, Lammel U, Grimm A, et al. The splicing factor crooked neck associates with the RNA-binding protein HOW to control glial cell maturation in Drosophila. Neuron 2006;52 6:969–80.PubMedCrossRef
54.
go back to reference Lopez-Schier H, St Johnston D. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev 2001;15 11:1393–405.PubMedCrossRef Lopez-Schier H, St Johnston D. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev 2001;15 11:1393–405.PubMedCrossRef
55.
go back to reference Wang X, Adam JC, Montell D. Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Dev Biol 2007;301 2:532–40.PubMedCrossRef Wang X, Adam JC, Montell D. Spatially localized Kuzbanian required for specific activation of Notch during border cell migration. Dev Biol 2007;301 2:532–40.PubMedCrossRef
56.
go back to reference Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004;9 2:145–63.PubMedCrossRef Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004;9 2:145–63.PubMedCrossRef
57.
go back to reference Humbert PO, Dow LE, Russell SM. The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol 2006;16 12:622–30.PubMedCrossRef Humbert PO, Dow LE, Russell SM. The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol 2006;16 12:622–30.PubMedCrossRef
58.
go back to reference Dow LE, Kauffman JS, Caddy J, Peterson AS, Jane SM, Russell SM, et al. The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 2007;26:2272–82.PubMedCrossRef Dow LE, Kauffman JS, Caddy J, Peterson AS, Jane SM, Russell SM, et al. The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 2007;26:2272–82.PubMedCrossRef
59.
go back to reference Grifoni D, Garoia F, Schimanski CC, Schmitz G, Laurenti E, Galle PR, et al. The human protein Hugl-1 substitutes for Drosophila lethal giant larvae tumour suppressor function in vivo. Oncogene 2004;23 53:8688–94.PubMedCrossRef Grifoni D, Garoia F, Schimanski CC, Schmitz G, Laurenti E, Galle PR, et al. The human protein Hugl-1 substitutes for Drosophila lethal giant larvae tumour suppressor function in vivo. Oncogene 2004;23 53:8688–94.PubMedCrossRef
60.
go back to reference Handa K, Yugawa T, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T. E6AP-Dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J Virol 2007;81 3:1379–89.PubMedCrossRef Handa K, Yugawa T, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T. E6AP-Dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein. J Virol 2007;81 3:1379–89.PubMedCrossRef
61.
go back to reference Bilder D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 2004;18 16:1909–25.PubMedCrossRef Bilder D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 2004;18 16:1909–25.PubMedCrossRef
62.
go back to reference Nagasaka K, Nakagawa S, Yano T, Takizawa S, Matsumoto Y, Tsuruga T, et al. Human homolog of Drosophila tumor suppressor Scribble negatively regulates cell-cycle progression from G1 to S phase by localizing at the basolateral membrane in epithelial cells. Cancer Sci 2006;97 11:1217–25.PubMedCrossRef Nagasaka K, Nakagawa S, Yano T, Takizawa S, Matsumoto Y, Tsuruga T, et al. Human homolog of Drosophila tumor suppressor Scribble negatively regulates cell-cycle progression from G1 to S phase by localizing at the basolateral membrane in epithelial cells. Cancer Sci 2006;97 11:1217–25.PubMedCrossRef
63.
go back to reference Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol 2003;23 24:8970–81.PubMedCrossRef Nguyen MM, Nguyen ML, Caruana G, Bernstein A, Lambert PF, Griep AE. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol 2003;23 24:8970–81.PubMedCrossRef
64.
go back to reference Goode S, Perrimon N. Brainiac and fringe are similar pioneer proteins that impart specificity to Notch signaling during Drosophila development. Cold Spring Harb Symp Quant Biol 1997;62:177–84.PubMed Goode S, Perrimon N. Brainiac and fringe are similar pioneer proteins that impart specificity to Notch signaling during Drosophila development. Cold Spring Harb Symp Quant Biol 1997;62:177–84.PubMed
65.
go back to reference Abdelilah-Seyfried S, Cox DN, Jan YN. Bazooka is a permissive factor for the invasive behavior of discs large tumor cells in Drosophila ovarian follicular epithelia. Development 2003;130 9:1927–35.PubMedCrossRef Abdelilah-Seyfried S, Cox DN, Jan YN. Bazooka is a permissive factor for the invasive behavior of discs large tumor cells in Drosophila ovarian follicular epithelia. Development 2003;130 9:1927–35.PubMedCrossRef
66.
go back to reference Szafranski P, Goode S. A Fasciclin 2 morphogenetic switch organizes epithelial cell cluster polarity and motility. Development 2004;131 9:2023–36.PubMedCrossRef Szafranski P, Goode S. A Fasciclin 2 morphogenetic switch organizes epithelial cell cluster polarity and motility. Development 2004;131 9:2023–36.PubMedCrossRef
67.
go back to reference Szafranski P, Goode S. Basolateral junctions are sufficient to suppress epithelial invasion during Drosophila oogenesis. Dev Dyn 2007;236 2:364–73.PubMedCrossRef Szafranski P, Goode S. Basolateral junctions are sufficient to suppress epithelial invasion during Drosophila oogenesis. Dev Dyn 2007;236 2:364–73.PubMedCrossRef
68.
go back to reference Beaucher M, Hersperger E, Page-McCaw A, Shearn A. Metastatic ability of Drosophila tumors depends on MMP activity. Dev Biol 2007;303 2:625–34. Beaucher M, Hersperger E, Page-McCaw A, Shearn A. Metastatic ability of Drosophila tumors depends on MMP activity. Dev Biol 2007;303 2:625–34.
69.
go back to reference Beaucher M, Goodliffe J, Hersperger E, Trunova S, Frydman H, Shearn A. Drosophila brain tumor metastases express both neuronal and glial cell type markers. Dev Biol 2007;301 1:287–97.PubMedCrossRef Beaucher M, Goodliffe J, Hersperger E, Trunova S, Frydman H, Shearn A. Drosophila brain tumor metastases express both neuronal and glial cell type markers. Dev Biol 2007;301 1:287–97.PubMedCrossRef
70.
go back to reference Woodhouse EC, Fisher A, Bandle RW, Bryant-Greenwood B, Charboneau L, Petricoin EF, 3rd, et al. Drosophila screening model for metastasis: semaphorin 5c is required for l(2)gl cancer phenotype. Proc Natl Acad Sci U S A 2003;100 20:11463–8.PubMedCrossRef Woodhouse EC, Fisher A, Bandle RW, Bryant-Greenwood B, Charboneau L, Petricoin EF, 3rd, et al. Drosophila screening model for metastasis: semaphorin 5c is required for l(2)gl cancer phenotype. Proc Natl Acad Sci U S A 2003;100 20:11463–8.PubMedCrossRef
71.
go back to reference Eulenberg KG, Schuh R. The tracheae defective gene encodes a bZIP protein that controls tracheal cell movement during Drosophila embryogenesis. EMBO J 1997;16 23:7156–65.PubMedCrossRef Eulenberg KG, Schuh R. The tracheae defective gene encodes a bZIP protein that controls tracheal cell movement during Drosophila embryogenesis. EMBO J 1997;16 23:7156–65.PubMedCrossRef
72.
go back to reference Lie YS, Macdonald PM. Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation. Development 1999;126 6:1129–38.PubMed Lie YS, Macdonald PM. Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation. Development 1999;126 6:1129–38.PubMed
73.
go back to reference Brumby AM, Richardson HE. Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 2005;5 8:626–39.PubMedCrossRef Brumby AM, Richardson HE. Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 2005;5 8:626–39.PubMedCrossRef
74.
go back to reference Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science 2003;302 5648:1227–31.PubMedCrossRef Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science 2003;302 5648:1227–31.PubMedCrossRef
75.
go back to reference Uhlirova M, Jasper H, Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci U S A 2005;102 37:13123–8.PubMedCrossRef Uhlirova M, Jasper H, Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci U S A 2005;102 37:13123–8.PubMedCrossRef
76.
go back to reference Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 2006;16 11:1139–46.PubMedCrossRef Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 2006;16 11:1139–46.PubMedCrossRef
77.
go back to reference Zhang S, Dailey GM, Kwan E, Glasheen BM, Sroga GE, Page-McCaw A. An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev 2006;20 14:1899–910.PubMedCrossRef Zhang S, Dailey GM, Kwan E, Glasheen BM, Sroga GE, Page-McCaw A. An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev 2006;20 14:1899–910.PubMedCrossRef
78.
go back to reference Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 2006;25 22:5294–304.PubMedCrossRef Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 2006;25 22:5294–304.PubMedCrossRef
79.
go back to reference Pereira PS, Teixeira A, Pinho S, Ferreira P, Fernandes J, Oliveira C, et al. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet 2006;15 10:1704–12.PubMedCrossRef Pereira PS, Teixeira A, Pinho S, Ferreira P, Fernandes J, Oliveira C, et al. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet 2006;15 10:1704–12.PubMedCrossRef
80.
go back to reference Michelson AM, Gisselbrecht S, Zhou Y, Baek KH, Buff EM. Dual functions of the heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev Genet 1998;22 3:212–29.PubMedCrossRef Michelson AM, Gisselbrecht S, Zhou Y, Baek KH, Buff EM. Dual functions of the heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev Genet 1998;22 3:212–29.PubMedCrossRef
81.
go back to reference Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 2001;107 1:17–26.PubMedCrossRef Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 2001;107 1:17–26.PubMedCrossRef
Metadata
Title
Modeling Migration and Metastasis in Drosophila
Authors
Anna C.-C. Jang
Michelle Starz-Gaiano
Denise J. Montell
Publication date
01-09-2007
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 2-3/2007
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-007-9042-8

Other articles of this Issue 2-3/2007

Journal of Mammary Gland Biology and Neoplasia 2-3/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine