Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 6/2022

Open Access 10-02-2022 | Original Research

A model-based approach to generating annotated pressure support waveforms

Authors: A. van Diepen, T. H. G. F. Bakkes, A. J. R. De Bie, S. Turco, R. A. Bouwman, P. H. Woerlee, M. Mischi

Published in: Journal of Clinical Monitoring and Computing | Issue 6/2022

Login to get access

Abstract

Large numbers of asynchronies during pressure support ventilation cause discomfort and higher work of breathing in the patient, and are associated with an increased mortality. There is a need for real-time decision support to detect asynchronies and assist the clinician towards lung-protective ventilation. Machine learning techniques have been proposed to detect asynchronies, but they require large datasets with sufficient data diversity, sample size, and quality for training purposes. In this work, we propose a method for generating a large, realistic and labeled, synthetic dataset for training and validating machine learning algorithms to detect a wide variety of asynchrony types. We take a model-based approach in which we adapt a non-linear lung-airway model for use in a diverse patient group and add a first-order ventilator model to generate labeled pressure, flow, and volume waveforms of pressure support ventilation. The model was able to reproduce basic measured lung mechanics parameters. Experienced clinicians were not able to differentiate between the simulated waveforms and clinical data (P = 0.44 by Fisher’s exact test). The detection performance of the machine learning trained on clinical data gave an overall comparable true positive rate on clinical data and on simulated data (an overall true positive rate of 94.3% and positive predictive value of 93.5% on simulated data and a true positive rate of 98% and positive predictive value of 98% on clinical data). Our findings demonstrate that it is possible to generate labeled pressure and flow waveforms with different types of asynchronies.
Literature
1.
go back to reference Abt S, Baier H. A plea for utilising synthetic data when performing machine learning based cyber-security experiments. In: Proceedings of the 2014 workshop on artificial intelligent and security workshop, pp. 37–45 (2014) Abt S, Baier H. A plea for utilising synthetic data when performing machine learning based cyber-security experiments. In: Proceedings of the 2014 workshop on artificial intelligent and security workshop, pp. 37–45 (2014)
2.
go back to reference Arnal JM, Garnero A, Saoli M, Chatburn RL. Parameters for simulation of adult subjects during mechanical ventilation. Respir Care. 2018;63(2):158–68.CrossRefPubMed Arnal JM, Garnero A, Saoli M, Chatburn RL. Parameters for simulation of adult subjects during mechanical ventilation. Respir Care. 2018;63(2):158–68.CrossRefPubMed
3.
go back to reference Athanasiades A, Ghorbel F, Clark J Jr, Niranjan S, Olansen J, Zwischenberger J, Bidani A. Energy analysis of a nonlinear model of the normal human lung. J Biol Syst. 2000;8(02):115–39.CrossRef Athanasiades A, Ghorbel F, Clark J Jr, Niranjan S, Olansen J, Zwischenberger J, Bidani A. Energy analysis of a nonlinear model of the normal human lung. J Biol Syst. 2000;8(02):115–39.CrossRef
5.
go back to reference Bakkes T, Montree R, Massimo M, Mojoli F, Turco S. A machine-learning method for automatic detection and classification of patient-ventilator asynchrony. In: 2020 42nd annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2020) Bakkes T, Montree R, Massimo M, Mojoli F, Turco S. A machine-learning method for automatic detection and classification of patient-ventilator asynchrony. In: 2020 42nd annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2020)
7.
go back to reference Beydon L, Svantesson C, Brauer K, Lemaire F, Jonson B. Respiratory mechanics in patients ventilated for critical lung disease. Eur Respir J. 1996;9(2):262–73.CrossRefPubMed Beydon L, Svantesson C, Brauer K, Lemaire F, Jonson B. Respiratory mechanics in patients ventilated for critical lung disease. Eur Respir J. 1996;9(2):262–73.CrossRefPubMed
8.
go back to reference Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, García-Esquirol O, Chacón E, Estruga A, Oliva JC, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–41.CrossRefPubMed Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, García-Esquirol O, Chacón E, Estruga A, Oliva JC, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633–41.CrossRefPubMed
9.
go back to reference Broseghini C, Brandolese R, Poggi R, Bernasconi M, Manzin E, Rossi A. Respiratory resistance and intrinsic positive end-expiratory pressure (peepi) in patients with the adult respiratory distress syndrome (ards). Eur Respir J. 1988;1(8):726–31.PubMed Broseghini C, Brandolese R, Poggi R, Bernasconi M, Manzin E, Rossi A. Respiratory resistance and intrinsic positive end-expiratory pressure (peepi) in patients with the adult respiratory distress syndrome (ards). Eur Respir J. 1988;1(8):726–31.PubMed
10.
go back to reference Brown NJ, Xuan W, Salome CM, Berend N, Hunter ML, Musk AB, James AL, King GG. Reference equations for respiratory system resistance and reactance in adults. Respir Physiol Neurobiol. 2010;172(3):162–8.CrossRefPubMed Brown NJ, Xuan W, Salome CM, Berend N, Hunter ML, Musk AB, James AL, King GG. Reference equations for respiratory system resistance and reactance in adults. Respir Physiol Neurobiol. 2010;172(3):162–8.CrossRefPubMed
11.
go back to reference Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A. Pressure support ventilation in patients with acute lung injury. Crit Care Med. 2000;28(5):1269–75.CrossRefPubMed Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A. Pressure support ventilation in patients with acute lung injury. Crit Care Med. 2000;28(5):1269–75.CrossRefPubMed
12.
go back to reference Chiew YS, Tan CP, Chase JG, Chiew YW, Desaive T, Ralib AM, Nor MBM. Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction. Comput Methods Programs Biomed. 2018;157:217–24.CrossRefPubMed Chiew YS, Tan CP, Chase JG, Chiew YW, Desaive T, Ralib AM, Nor MBM. Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction. Comput Methods Programs Biomed. 2018;157:217–24.CrossRefPubMed
13.
go back to reference De Bie AJ, Neto AS, van Meenen DM, Bouwman AR, Roos AN, Lameijer JR, Korsten EH, Schultz MJ, Bindels AJ. Fully automated postoperative ventilation in cardiac surgery patients: a randomised clinical trial. Br J Anaesth. 2020;125(5):739–49.CrossRefPubMed De Bie AJ, Neto AS, van Meenen DM, Bouwman AR, Roos AN, Lameijer JR, Korsten EH, Schultz MJ, Bindels AJ. Fully automated postoperative ventilation in cardiac surgery patients: a randomised clinical trial. Br J Anaesth. 2020;125(5):739–49.CrossRefPubMed
14.
go back to reference Eissa N, Ranieri VM, Corbeil C, Chassé M, Robatto F, Braidy J, Milic-Emili J. Analysis of behavior of the respiratory system in ards patients: effects of flow, volume, and time. J Appl Physiol. 1991;70(6):2719–29.CrossRefPubMed Eissa N, Ranieri VM, Corbeil C, Chassé M, Robatto F, Braidy J, Milic-Emili J. Analysis of behavior of the respiratory system in ards patients: effects of flow, volume, and time. J Appl Physiol. 1991;70(6):2719–29.CrossRefPubMed
15.
go back to reference Farré R, Ferrer M, Rotger M, Torres A, Navajas D. Respiratory mechanics in ventilated copd patients: forced oscillation versus occlusion techniques. Eur Respir J. 1998;12(1):170–6.CrossRefPubMed Farré R, Ferrer M, Rotger M, Torres A, Navajas D. Respiratory mechanics in ventilated copd patients: forced oscillation versus occlusion techniques. Eur Respir J. 1998;12(1):170–6.CrossRefPubMed
16.
go back to reference Flevari A, Maniatis N, Kremiotis T, Siempos I, Betrosian A, Roussos C, Douzinas E, Armaganidis A. Rohrer’s constant, k2, as a factor of determining inspiratory resistance of common adult endotracheal tubes. Anaesth Intensive Care. 2011;39(3):410–7.CrossRefPubMed Flevari A, Maniatis N, Kremiotis T, Siempos I, Betrosian A, Roussos C, Douzinas E, Armaganidis A. Rohrer’s constant, k2, as a factor of determining inspiratory resistance of common adult endotracheal tubes. Anaesth Intensive Care. 2011;39(3):410–7.CrossRefPubMed
17.
go back to reference Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes? Am J Respir Crit Care Med. 1998;158(1):3–11.CrossRefPubMed Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes? Am J Respir Crit Care Med. 1998;158(1):3–11.CrossRefPubMed
18.
go back to reference Guerin C, Coussa M, Eissa N, Corbeil C, Chasse M, Braidy J, Matar N, Milic-Emili J. Lung and chest wall mechanics in mechanically ventilated copd patients. J Appl Physiol. 1993;74(4):1570–80.CrossRefPubMed Guerin C, Coussa M, Eissa N, Corbeil C, Chasse M, Braidy J, Matar N, Milic-Emili J. Lung and chest wall mechanics in mechanically ventilated copd patients. J Appl Physiol. 1993;74(4):1570–80.CrossRefPubMed
19.
go back to reference de Haro C, Ochagavia A, López-Aguilar J, Fernandez-Gonzalo S, Navarra-Ventura G, Magrans R, Montanyà J, Blanch L, et al. Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp. 2019;7(1):43.CrossRefPubMedPubMedCentral de Haro C, Ochagavia A, López-Aguilar J, Fernandez-Gonzalo S, Navarra-Ventura G, Magrans R, Montanyà J, Blanch L, et al. Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities. Intensive Care Med Exp. 2019;7(1):43.CrossRefPubMedPubMedCentral
20.
go back to reference Kallet R, Katz J. Respiratory system mechanics in acute respiratory distress syndrome. Respir Care Clin North Am. 2003;9(3):297–319.CrossRef Kallet R, Katz J. Respiratory system mechanics in acute respiratory distress syndrome. Respir Care Clin North Am. 2003;9(3):297–319.CrossRef
21.
go back to reference Khirani S, Polese G, Aliverti A, Appendini L, Nucci G, Pedotti A, Colledan M, Lucianetti A, Baconnier P, Rossi A. On-line monitoring of lung mechanics during spontaneous breathing: a physiological study. Respir Med. 2010;104(3):463–71.CrossRefPubMed Khirani S, Polese G, Aliverti A, Appendini L, Nucci G, Pedotti A, Colledan M, Lucianetti A, Baconnier P, Rossi A. On-line monitoring of lung mechanics during spontaneous breathing: a physiological study. Respir Med. 2010;104(3):463–71.CrossRefPubMed
22.
go back to reference Marchioni A, Tonelli R, Rossi G, Spagnolo P, Luppi F, Cerri S, Cocconcelli E, Pellegrino MR, Fantini R, Tabbì L, et al. Ventilatory support and mechanical properties of the fibrotic lung acting as a squishy ball. Ann Intensive Care. 2020;10(1):1–9.CrossRef Marchioni A, Tonelli R, Rossi G, Spagnolo P, Luppi F, Cerri S, Cocconcelli E, Pellegrino MR, Fantini R, Tabbì L, et al. Ventilatory support and mechanical properties of the fibrotic lung acting as a squishy ball. Ann Intensive Care. 2020;10(1):1–9.CrossRef
23.
go back to reference MATLAB: version 9.7.0.1216025 (R2019b) Update 1. The MathWorks Inc., Natick, Massachusetts (2019) MATLAB: version 9.7.0.1216025 (R2019b) Update 1. The MathWorks Inc., Natick, Massachusetts (2019)
24.
go back to reference Miravitlles M, Calle M, Soler-Cataluña JJ. Clinical phenotypes of copd: identification, definition and implications for guidelines. Arch Bronconeumol (English Edition). 2012;48(3):86–98.CrossRef Miravitlles M, Calle M, Soler-Cataluña JJ. Clinical phenotypes of copd: identification, definition and implications for guidelines. Arch Bronconeumol (English Edition). 2012;48(3):86–98.CrossRef
25.
go back to reference Murgu SD, Colt HG. Tracheobronchomalacia and excessive dynamic airway collapse. Respirology. 2006;11(4):388–406.CrossRefPubMed Murgu SD, Colt HG. Tracheobronchomalacia and excessive dynamic airway collapse. Respirology. 2006;11(4):388–406.CrossRefPubMed
28.
go back to reference Parameswaran K, Todd DC, Soth M. Altered respiratory physiology in obesity. Canad Respir J. 2006;13(4):203–10.CrossRef Parameswaran K, Todd DC, Soth M. Altered respiratory physiology in obesity. Canad Respir J. 2006;13(4):203–10.CrossRef
29.
go back to reference Pelosi P, Croci M, Ravagnan I, Cerisara M, Vicardi P, Lissoni A, Gattinoni L. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol. 1997;82(3):811–8.CrossRefPubMed Pelosi P, Croci M, Ravagnan I, Cerisara M, Vicardi P, Lissoni A, Gattinoni L. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol. 1997;82(3):811–8.CrossRefPubMed
30.
go back to reference Pelosi P, Croci M, Ravagnan I, Tredici S, Pedoto A, Lissoni A, Gattinoni L. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analges. 1998;87(3):654–60.CrossRef Pelosi P, Croci M, Ravagnan I, Tredici S, Pedoto A, Lissoni A, Gattinoni L. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analges. 1998;87(3):654–60.CrossRef
31.
32.
go back to reference Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev. 2018;27(147):170062.CrossRefPubMed Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev. 2018;27(147):170062.CrossRefPubMed
33.
go back to reference Prinianakis G, Plataki M, Kondili E, Klimathianaki M, Vaporidi K, Georgopoulos D. Effects of relaxation of inspiratory muscleson ventilator pressure during pressure support. Intensive Care Med. 2008;34(1):70–4.CrossRefPubMed Prinianakis G, Plataki M, Kondili E, Klimathianaki M, Vaporidi K, Georgopoulos D. Effects of relaxation of inspiratory muscleson ventilator pressure during pressure support. Intensive Care Med. 2008;34(1):70–4.CrossRefPubMed
34.
go back to reference Rehm GB, Woo SH, Chen XL, Kuhn BT, Cortes-Puch I, Anderson NR, Adams JY, Chuah CN. Leveraging iots and machine learning for patient diagnosis and ventilation management in the intensive care unit. IEEE Pervasive Comput. 2020;19(3):68–78.CrossRefPubMed Rehm GB, Woo SH, Chen XL, Kuhn BT, Cortes-Puch I, Anderson NR, Adams JY, Chuah CN. Leveraging iots and machine learning for patient diagnosis and ventilation management in the intensive care unit. IEEE Pervasive Comput. 2020;19(3):68–78.CrossRefPubMed
35.
go back to reference Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ats workshop on lung volume measurements. official statement of the european respiratory society. Eur Respir J 8(3), 492–506 (1995) Stocks J, Quanjer PH. Reference values for residual volume, functional residual capacity and total lung capacity. ats workshop on lung volume measurements. official statement of the european respiratory society. Eur Respir J 8(3), 492–506 (1995)
36.
go back to reference Venegas JG, Harris RS, Simon BA. A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol. 1998;84(1):389–95.CrossRefPubMed Venegas JG, Harris RS, Simon BA. A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol. 1998;84(1):389–95.CrossRefPubMed
37.
go back to reference Wenzel C, Schumann S, Spaeth J. Coaxial tubing systems increase artificial airway resistance and work of breathing. Respir Care. 2017;62(9):1171–7.CrossRefPubMed Wenzel C, Schumann S, Spaeth J. Coaxial tubing systems increase artificial airway resistance and work of breathing. Respir Care. 2017;62(9):1171–7.CrossRefPubMed
38.
go back to reference Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest. 1993;103(5):1470–6.CrossRefPubMed Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest. 1993;103(5):1470–6.CrossRefPubMed
39.
go back to reference Zhang L, Mao K, Duan K, Fang S, Lu Y, Gong Q, Lu F, Jiang Y, Jiang L, Fang W, et al. Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network. Comput Biol Med. 2020;120:103721.CrossRefPubMed Zhang L, Mao K, Duan K, Fang S, Lu Y, Gong Q, Lu F, Jiang Y, Jiang L, Fang W, et al. Detection of patient-ventilator asynchrony from mechanical ventilation waveforms using a two-layer long short-term memory neural network. Comput Biol Med. 2020;120:103721.CrossRefPubMed
Metadata
Title
A model-based approach to generating annotated pressure support waveforms
Authors
A. van Diepen
T. H. G. F. Bakkes
A. J. R. De Bie
S. Turco
R. A. Bouwman
P. H. Woerlee
M. Mischi
Publication date
10-02-2022
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 6/2022
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-022-00822-4

Other articles of this Issue 6/2022

Journal of Clinical Monitoring and Computing 6/2022 Go to the issue