Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 6/2020

01-12-2020 | Original Research

The Peripheral Perfusion Index tracks systemic haemodynamics during general anaesthesia

Authors: J. Højlund, M. Agerskov, C. G. Clemmesen, L. Edvardsen Hvolris, N. B. Foss

Published in: Journal of Clinical Monitoring and Computing | Issue 6/2020

Login to get access

Abstract

Stable intraoperative haemodynamics are associated with improved outcome and even short periods of instability are associated with an increased risk of complications. During anaesthesia intermittent non-invasive blood pressure and heart rate remains the cornerstone of haemodynamic monitoring. Continuous monitoring of systemic blood pressure or even -flow requires invasive or advanced modalities creating a barrier for obtaining important real-time haemodynamic insight. The Peripheral Perfusion Index (PPI) is obtained continuously and non-invasively by standard photoplethysmography. We hypothesized that changes in indices of systemic blood flow during general anaesthesia would be reflected in the PPI. PPI, stroke volume (SV), cardiac output (CO) and mean arterial pressure (MAP) were evaluated in 20 patients. During general anaesthesia but before start of surgery relative changes of SV, CO and MAP were compared to the relative changes of PPI induced by head-up (HUT) and head-down tilt (HDT). Furthermore, the effect of phenylephrine (PE) during HUT on these parameters was investigated. ∆PPI correlated significantly (p < 0.001) with ∆SV (r = 0.9), ∆CO (r = 0.9), and ∆MAP (r = 0.9). HUT following induction of anaesthesia resulted in a decrease in PPI of 41% (25–52) [median (IQR)], SV 27% (23–31), CO 27% (25–35), and MAP 28% (22–35). HDT led to an increase in PPI of 203% (120–375), SV of 29% (21–41), CO 22% (16–34), and MAP 47% (42–60). After stabilizing a second HUT decreased PPI 59% (49–76), SV 33% (28–37), CO 31% (28–36), and MAP 34% (26–38). Restoration of preload with PE increased PPI by 607% (218–1078), SV by 96% (82–116), CO by 65% (56–99), and MAP by 114% (83–147). During general anaesthesia changes in PPI tracked changes in systemic haemodynamics.
Literature
1.
go back to reference Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vásquez SM, et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death. Anesthesiology. 2018;128:317–27.PubMedCrossRef Sessler DI, Meyhoff CS, Zimmerman NM, Mao G, Leslie K, Vásquez SM, et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death. Anesthesiology. 2018;128:317–27.PubMedCrossRef
2.
go back to reference Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery. Anesthesiology. 2017;126:47–65.PubMedCrossRef Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery. Anesthesiology. 2017;126:47–65.PubMedCrossRef
3.
go back to reference Vincent JL, Pelosi P, Pearse R, Payen D, Perel A, Hoeft A, et al. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care. 2015;19:1–12.CrossRef Vincent JL, Pelosi P, Pearse R, Payen D, Perel A, Hoeft A, et al. Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12. Crit Care. 2015;19:1–12.CrossRef
4.
go back to reference Joosten A, Delaporte A, Ickx B, Touihri K, Stany I, Barvais L, et al. Crystalloid versus colloid for intraoperative goal-directed fluid therapy using a closed-loop system. Anesthesiology. 2018;128:55–66.PubMedCrossRef Joosten A, Delaporte A, Ickx B, Touihri K, Stany I, Barvais L, et al. Crystalloid versus colloid for intraoperative goal-directed fluid therapy using a closed-loop system. Anesthesiology. 2018;128:55–66.PubMedCrossRef
5.
go back to reference Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.PubMedCrossRef Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.PubMedCrossRef
6.
go back to reference Reisner A, Shaltis PA, McCombie D, Asada HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology. 2008;108:950–8.PubMedCrossRef Reisner A, Shaltis PA, McCombie D, Asada HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology. 2008;108:950–8.PubMedCrossRef
7.
go back to reference Nuttall G, Burckhardt J, Hadley A, Kane S, Kor D, Marienau MS, et al. Surgical and patient risk factors for severe arterial line complications in adults. Anesthesiology. 2016;124:590–7.PubMedCrossRef Nuttall G, Burckhardt J, Hadley A, Kane S, Kor D, Marienau MS, et al. Surgical and patient risk factors for severe arterial line complications in adults. Anesthesiology. 2016;124:590–7.PubMedCrossRef
8.
go back to reference Jeleazcov C, Krajinovic L, Münster T, Birkholz T, Fried R, Schüttler J, et al. Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. Br J Anaesth. 2010;105:264–72.PubMedCrossRef Jeleazcov C, Krajinovic L, Münster T, Birkholz T, Fried R, Schüttler J, et al. Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. Br J Anaesth. 2010;105:264–72.PubMedCrossRef
9.
go back to reference McCarthy T, Telec N, Dennis A, Griffiths J, Buettner A. Ability of non-invasive intermittent blood pressure monitoring and a continuous non-invasive arterial pressure monitor (CNAP TM) to provide new readings in each 1-min interval during elective caesarean section under spinal anaesthesia. Anaesthesia. 2012;67:274–9.PubMedCrossRef McCarthy T, Telec N, Dennis A, Griffiths J, Buettner A. Ability of non-invasive intermittent blood pressure monitoring and a continuous non-invasive arterial pressure monitor (CNAP TM) to provide new readings in each 1-min interval during elective caesarean section under spinal anaesthesia. Anaesthesia. 2012;67:274–9.PubMedCrossRef
10.
go back to reference Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, et al. Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth. 2005;95:603–10.PubMedCrossRef Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, et al. Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth. 2005;95:603–10.PubMedCrossRef
11.
go back to reference Martin E, Anyikam A, Ballas J, Buono K, Mantell K, Huynh-Covey T, et al. A validation study of electrical cardiometry in pregnant patients using transthoracic echocardiography as the reference standard. J Clin Monit Comput. 2016;30:679–86.PubMedCrossRef Martin E, Anyikam A, Ballas J, Buono K, Mantell K, Huynh-Covey T, et al. A validation study of electrical cardiometry in pregnant patients using transthoracic echocardiography as the reference standard. J Clin Monit Comput. 2016;30:679–86.PubMedCrossRef
12.
go back to reference van Genderen ME, Paauwe J, de Jonge J, van der Valk RJP, Lima A, Bakker J, et al. Clinical assessment of peripheral perfusion to predict postoperative complications after major abdominal surgery early: a prospective observational study in adults. Crit Care. 2014;18:R114.PubMedPubMedCentralCrossRef van Genderen ME, Paauwe J, de Jonge J, van der Valk RJP, Lima A, Bakker J, et al. Clinical assessment of peripheral perfusion to predict postoperative complications after major abdominal surgery early: a prospective observational study in adults. Crit Care. 2014;18:R114.PubMedPubMedCentralCrossRef
13.
go back to reference Oskay A, Eray O, Dinç SE, Aydın AG, Eken C. Prognosis of critically ill patients in the ED and value of perfusion index measurement: a cross-sectional study. Am J Emerg Med. 2015;33:1042–4.PubMedCrossRef Oskay A, Eray O, Dinç SE, Aydın AG, Eken C. Prognosis of critically ill patients in the ED and value of perfusion index measurement: a cross-sectional study. Am J Emerg Med. 2015;33:1042–4.PubMedCrossRef
14.
go back to reference He H, Liu D, Long Y, Wang X. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care. 2013;17:R116.PubMedPubMedCentralCrossRef He H, Liu D, Long Y, Wang X. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care. 2013;17:R116.PubMedPubMedCentralCrossRef
15.
go back to reference He H, Long Y, Liu D, Wang X, Zhou X. Clinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion index. Crit Care. 2015;19:330.PubMedPubMedCentralCrossRef He H, Long Y, Liu D, Wang X, Zhou X. Clinical classification of tissue perfusion based on the central venous oxygen saturation and the peripheral perfusion index. Crit Care. 2015;19:330.PubMedPubMedCentralCrossRef
16.
go back to reference Klijn E, Groeneveld ABJ, van Genderen ME, Betjes M, Bakker J, van Bommel J. Peripheral perfusion index predicts hypotension during fluid withdrawal by continuous veno-venous hemofiltration in critically ill patients. Blood Purif. 2015;40:92–8.PubMedCrossRef Klijn E, Groeneveld ABJ, van Genderen ME, Betjes M, Bakker J, van Bommel J. Peripheral perfusion index predicts hypotension during fluid withdrawal by continuous veno-venous hemofiltration in critically ill patients. Blood Purif. 2015;40:92–8.PubMedCrossRef
17.
go back to reference Toyama S, Kakumoto M, Morioka M, Matsuoka K, Omatsu H, Tagaito Y, et al. Perfusion index derived from a pulse oximeter can predict the incidence of hypotension during spinal anaesthesia for caesarean delivery. Br J Anaesth. 2013;111:235–41.PubMedCrossRef Toyama S, Kakumoto M, Morioka M, Matsuoka K, Omatsu H, Tagaito Y, et al. Perfusion index derived from a pulse oximeter can predict the incidence of hypotension during spinal anaesthesia for caesarean delivery. Br J Anaesth. 2013;111:235–41.PubMedCrossRef
18.
go back to reference Duggappa DR, Lokesh M, Dixit A, Paul R, Raghavendra Rao RS, Prabha P. Perfusion index as a predictor of hypotension following spinal anaesthesia in lower segment caesarean section. Indian J Anaesth. 2017;61:649–54.PubMedPubMedCentralCrossRef Duggappa DR, Lokesh M, Dixit A, Paul R, Raghavendra Rao RS, Prabha P. Perfusion index as a predictor of hypotension following spinal anaesthesia in lower segment caesarean section. Indian J Anaesth. 2017;61:649–54.PubMedPubMedCentralCrossRef
19.
go back to reference van Genderen ME, Bartels SA, Lima A, Bezemer R, Ince C, Bakker J, et al. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth Analg. 2013;116:351–6.PubMedCrossRef van Genderen ME, Bartels SA, Lima A, Bezemer R, Ince C, Bakker J, et al. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth Analg. 2013;116:351–6.PubMedCrossRef
20.
go back to reference Cooke WH, Rickards CA, Ryan KL, Kuusela TA, Convertino VA. Muscle sympathetic nerve activity during intense lower body negative pressure to presyncope in humans. J Physiol. 2009;587:4987–99.PubMedPubMedCentralCrossRef Cooke WH, Rickards CA, Ryan KL, Kuusela TA, Convertino VA. Muscle sympathetic nerve activity during intense lower body negative pressure to presyncope in humans. J Physiol. 2009;587:4987–99.PubMedPubMedCentralCrossRef
21.
go back to reference Beurton A, Teboul J-L, Gavelli F, Gonzalez FA, Girotto V, Galarza L, et al. The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Crit Care. 2019;23:19.PubMedPubMedCentralCrossRef Beurton A, Teboul J-L, Gavelli F, Gonzalez FA, Girotto V, Galarza L, et al. The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Crit Care. 2019;23:19.PubMedPubMedCentralCrossRef
22.
go back to reference Corsini I, Cecchi A, Coviello C, Dani C. Perfusion index and left ventricular output correlation in healthy term infants. Eur J Pediatr. 2017;176:1013–8.PubMedCrossRef Corsini I, Cecchi A, Coviello C, Dani C. Perfusion index and left ventricular output correlation in healthy term infants. Eur J Pediatr. 2017;176:1013–8.PubMedCrossRef
23.
go back to reference Janaillac M, Beausoleil TP, Barrington KJ, Raboisson M-J, Karam O, Dehaes M, et al. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur J Pediatr. 2018;177:541–50.PubMedCrossRef Janaillac M, Beausoleil TP, Barrington KJ, Raboisson M-J, Karam O, Dehaes M, et al. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur J Pediatr. 2018;177:541–50.PubMedCrossRef
24.
go back to reference Ginosar Y, Weiniger CF, Meroz Y, Kurz V, Bdolah-Abram T, Babchenko A, et al. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia. Acta Anaesthesiol Scand. 2009;53:1018–26.PubMedCrossRef Ginosar Y, Weiniger CF, Meroz Y, Kurz V, Bdolah-Abram T, Babchenko A, et al. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia. Acta Anaesthesiol Scand. 2009;53:1018–26.PubMedCrossRef
25.
go back to reference Kus A, Gurkan Y, Gormus SK, Solak M, Toker K. Usefulness of perfusion index to detect the effect of brachial plexus block. J Clin Monit Comput. 2013;27:325–8.PubMedCrossRef Kus A, Gurkan Y, Gormus SK, Solak M, Toker K. Usefulness of perfusion index to detect the effect of brachial plexus block. J Clin Monit Comput. 2013;27:325–8.PubMedCrossRef
26.
go back to reference Abdelnasser A, Abdelhamid B, Elsonbaty A, Hasanin A, Rady A. Predicting successful supraclavicular brachial plexus block using pulse oximeter perfusion index. Br J Anaesth. 2017;119:276–80.PubMedCrossRef Abdelnasser A, Abdelhamid B, Elsonbaty A, Hasanin A, Rady A. Predicting successful supraclavicular brachial plexus block using pulse oximeter perfusion index. Br J Anaesth. 2017;119:276–80.PubMedCrossRef
27.
go back to reference Şahin ÖF, Tarıkçı Kılıç E, Aksoy Y, Kaydu A, Gökçek E. The importance of perfusion index monitoring in evaluating the efficacy of stellate ganglion blockage treatment in Raynaud’s disease. Libyan J Med. 2018;13:1422666.PubMedPubMedCentralCrossRef Şahin ÖF, Tarıkçı Kılıç E, Aksoy Y, Kaydu A, Gökçek E. The importance of perfusion index monitoring in evaluating the efficacy of stellate ganglion blockage treatment in Raynaud’s disease. Libyan J Med. 2018;13:1422666.PubMedPubMedCentralCrossRef
28.
go back to reference Klodell CT, Lobato EB, Willert JL, Gravenstein N. Oximetry-derived perfusion index for intraoperative identification of successful thoracic sympathectomy. Ann Thorac Surg. 2005;80:467–70.PubMedCrossRef Klodell CT, Lobato EB, Willert JL, Gravenstein N. Oximetry-derived perfusion index for intraoperative identification of successful thoracic sympathectomy. Ann Thorac Surg. 2005;80:467–70.PubMedCrossRef
29.
go back to reference Taneyama C, Goto H, Kohno N, Benson KT, Sasao J, Arakawa K. Effects of fentanyl, diazepam, and the combination of both on arterial baroreflex and sympathetic nerve activity in intact and baro-denervated dogs. Anesth Analg. 1993;77:44–8.PubMedCrossRef Taneyama C, Goto H, Kohno N, Benson KT, Sasao J, Arakawa K. Effects of fentanyl, diazepam, and the combination of both on arterial baroreflex and sympathetic nerve activity in intact and baro-denervated dogs. Anesth Analg. 1993;77:44–8.PubMedCrossRef
30.
go back to reference Sellgren J, Pontén J, Wallin BG. Characteristics of muscle nerve sympathetic activity during general anaesthesia in humans. Acta Anaesthesiol Scand. 1992;36:336–45.PubMedCrossRef Sellgren J, Pontén J, Wallin BG. Characteristics of muscle nerve sympathetic activity during general anaesthesia in humans. Acta Anaesthesiol Scand. 1992;36:336–45.PubMedCrossRef
31.
go back to reference Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992;76:725–33.PubMedCrossRef Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992;76:725–33.PubMedCrossRef
32.
go back to reference Ebert TJ. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology. 2005;103:20–4.PubMedCrossRef Ebert TJ. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology. 2005;103:20–4.PubMedCrossRef
33.
go back to reference Robinson BJ, Ebert TJ, O’Brien TJ, Colinco MD, Muzi M. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology. 1997;86:64–72.PubMedCrossRef Robinson BJ, Ebert TJ, O’Brien TJ, Colinco MD, Muzi M. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology. 1997;86:64–72.PubMedCrossRef
34.
35.
go back to reference Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med Biol Eng Comput. 1980;18:27–32.PubMedCrossRef Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med Biol Eng Comput. 1980;18:27–32.PubMedCrossRef
36.
go back to reference Alexander CM, Teller LE, Gross JB. Principles of pulse oximetry: theoretical and practical considerations. Anesth Analg. 1989;69:368–76.CrossRef Alexander CM, Teller LE, Gross JB. Principles of pulse oximetry: theoretical and practical considerations. Anesth Analg. 1989;69:368–76.CrossRef
37.
go back to reference Tusman G, Bohm SH, Suarez-Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg. 2017;124:62–71.PubMedCrossRef Tusman G, Bohm SH, Suarez-Sipmann F. Advanced uses of pulse oximetry for monitoring mechanically ventilated patients. Anesth Analg. 2017;124:62–71.PubMedCrossRef
38.
go back to reference Kemps HMC, Thijssen EJM, Schep G, Sleutjes BTHM, De Vries WR, Hoogeveen AR, et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol. 2008;105:1822–9.PubMedCrossRef Kemps HMC, Thijssen EJM, Schep G, Sleutjes BTHM, De Vries WR, Hoogeveen AR, et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol. 2008;105:1822–9.PubMedCrossRef
39.
go back to reference Geerts B, De Wilde R, Aarts L, Jansen J. Pulse contour analysis to assess hemodynamic response to passive leg raising. J Cardiothorac Vasc Anesth. 2011;25:48–52.PubMedCrossRef Geerts B, De Wilde R, Aarts L, Jansen J. Pulse contour analysis to assess hemodynamic response to passive leg raising. J Cardiothorac Vasc Anesth. 2011;25:48–52.PubMedCrossRef
40.
go back to reference Pittman J, Bar-Yosef S, SumPing J, Sherwood M, Mark J. Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med. 2005;33:2015–21.PubMedCrossRef Pittman J, Bar-Yosef S, SumPing J, Sherwood M, Mark J. Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med. 2005;33:2015–21.PubMedCrossRef
41.
go back to reference Cannesson M, Jian Z, Chen G, Vu TQ, Hatib F. Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship. J Appl Physiol. 2012;113:281–9.PubMedCrossRef Cannesson M, Jian Z, Chen G, Vu TQ, Hatib F. Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship. J Appl Physiol. 2012;113:281–9.PubMedCrossRef
42.
go back to reference Wodack KH, Graessler MF, Nishimoto SA, Behem CR, Pinnschmidt HO, et al. Assessment of central hemodynamic effects of phenylephrine: an animal experiment. J Clin Monit Comput. 2019;33:377–84.PubMedCrossRef Wodack KH, Graessler MF, Nishimoto SA, Behem CR, Pinnschmidt HO, et al. Assessment of central hemodynamic effects of phenylephrine: an animal experiment. J Clin Monit Comput. 2019;33:377–84.PubMedCrossRef
43.
go back to reference Kalmar AF, Allaert S, Pletinckx P, Maes J-W, Heerman J, Vos JJ, et al. Phenylephrine increases cardiac output by raising cardiac preload in patients with anesthesia induced hypotension. J Clin Monit Comput. 2018;32:969–76.PubMedPubMedCentralCrossRef Kalmar AF, Allaert S, Pletinckx P, Maes J-W, Heerman J, Vos JJ, et al. Phenylephrine increases cardiac output by raising cardiac preload in patients with anesthesia induced hypotension. J Clin Monit Comput. 2018;32:969–76.PubMedPubMedCentralCrossRef
44.
go back to reference Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH. Syncope, cerebral perfusion, and oxygenation. J Appl Physiol. 2003;94:833–48.PubMedCrossRef Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH. Syncope, cerebral perfusion, and oxygenation. J Appl Physiol. 2003;94:833–48.PubMedCrossRef
46.
go back to reference Rebet O, Andremont O, Gérard J-L, Fellahi J-L, Hanouz J-L, Fischer M-O. Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients. Eur J Anaesthesiol. 2016;33:638–44.PubMedCrossRef Rebet O, Andremont O, Gérard J-L, Fellahi J-L, Hanouz J-L, Fischer M-O. Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients. Eur J Anaesthesiol. 2016;33:638–44.PubMedCrossRef
47.
go back to reference Coutrot M, Joachim J, Dépret F, Millasseau S, Nougué H, Matéo J, et al. Noninvasive continuous detection of arterial hypotension during induction of anaesthesia using a photoplethysmographic signal: proof of concept. Br J Anaesth. 2019;122:605–12.PubMedCrossRef Coutrot M, Joachim J, Dépret F, Millasseau S, Nougué H, Matéo J, et al. Noninvasive continuous detection of arterial hypotension during induction of anaesthesia using a photoplethysmographic signal: proof of concept. Br J Anaesth. 2019;122:605–12.PubMedCrossRef
48.
go back to reference Futier E, Lefrant J-Y, Guinot P-G, Godet T, Lorne E, Cuvillon P, et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318:1346–57.PubMedPubMedCentralCrossRef Futier E, Lefrant J-Y, Guinot P-G, Godet T, Lorne E, Cuvillon P, et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA. 2017;318:1346–57.PubMedPubMedCentralCrossRef
Metadata
Title
The Peripheral Perfusion Index tracks systemic haemodynamics during general anaesthesia
Authors
J. Højlund
M. Agerskov
C. G. Clemmesen
L. Edvardsen Hvolris
N. B. Foss
Publication date
01-12-2020
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 6/2020
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-019-00420-x

Other articles of this Issue 6/2020

Journal of Clinical Monitoring and Computing 6/2020 Go to the issue