Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 2/2016

Open Access 01-04-2016 | Original Research

Detection of intraneural needle-placement with multiple frequency bioimpedance monitoring: a novel method

Authors: Håvard Kalvøy, Axel R. Sauter

Published in: Journal of Clinical Monitoring and Computing | Issue 2/2016

Login to get access

Abstract

Electrical impedance measurements have been used to detect intraneural needle placement, but there is still a lack of precision with this method. The purpose of the study was to develop a method for the discrimination of nerve tissue from other tissue types based on multiple frequency impedance measurements. Impedance measurements with 25 different frequencies between 1.26 and 398 kHz were obtained in eight pigs while placing the tip of a stimulation needle within the sciatic nerve and in other tissues. Various impedance variables and measurement frequencies were tested for tissue discrimination. Best tissue discrimination was obtained by using three different impedance parameters with optimal measurement frequencies: Modulus (126 kHz), Phase angle (40 kHz) and the Delta of the phase angle (between 126 and 158 kHz). These variables were combined in a Compound variable C. The area under the curve in a receiver operating characteristic was consecutively increased for the Modulus (78 %), Phase angle (86 %), Delta of the phase angle (94 %), and the Compound variable C (97 %), indicating highest specificity and sensitivity for C. An algorithm based on C was implemented in a real-time feasibility test and used in an additional test animal to demonstrate our new method. Discrimination between nerve tissue and other tissue types was improved by combining several impedance variables at multiple measurement frequencies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Borgeat A, Blumenthal S. Nerve injury and regional anaesthesia. Curr Opin Anaesthesiol. 2004;17(5):417–21.CrossRefPubMed Borgeat A, Blumenthal S. Nerve injury and regional anaesthesia. Curr Opin Anaesthesiol. 2004;17(5):417–21.CrossRefPubMed
2.
go back to reference Borgeat A, Ekatodramis G, Kalberer F, Benz C. Acute and nonacute complications associated with interscalene block and shoulder surgery: a prospective study. Anesthesiology. 2001;95(4):875–80.CrossRefPubMed Borgeat A, Ekatodramis G, Kalberer F, Benz C. Acute and nonacute complications associated with interscalene block and shoulder surgery: a prospective study. Anesthesiology. 2001;95(4):875–80.CrossRefPubMed
4.
go back to reference Klaastad O, Sauter AR, Dodgson MS. Brachial plexus block with or without ultrasound guidance. Curr Opin Anaesthesiol. 2009;22(5):655–60.CrossRefPubMed Klaastad O, Sauter AR, Dodgson MS. Brachial plexus block with or without ultrasound guidance. Curr Opin Anaesthesiol. 2009;22(5):655–60.CrossRefPubMed
5.
go back to reference Voelckel WG, Klima G, Krismer AC, Haslinger C, Stadlbauer KH, Wenzel V, von Goedecke A. Signs of inflammation after sciatic nerve block in pigs. Anesth Analg. 2005;101(6):1844–6.CrossRefPubMed Voelckel WG, Klima G, Krismer AC, Haslinger C, Stadlbauer KH, Wenzel V, von Goedecke A. Signs of inflammation after sciatic nerve block in pigs. Anesth Analg. 2005;101(6):1844–6.CrossRefPubMed
6.
go back to reference Chan VW, Brull R, McCartney CJ, Xu D, Abbas S, Shannon P. An ultrasonographic and histological study of intraneural injection and electrical stimulation in pigs. Anesth Analg. 2007;104(5):1281–4.CrossRefPubMed Chan VW, Brull R, McCartney CJ, Xu D, Abbas S, Shannon P. An ultrasonographic and histological study of intraneural injection and electrical stimulation in pigs. Anesth Analg. 2007;104(5):1281–4.CrossRefPubMed
7.
go back to reference Bigeleisen PE, Moayeri N, Groen GJ. Extraneural versus intraneural stimulation thresholds during ultrasound-guided supraclavicular block. Anesthesiology. 2009;110(6):1235–43.CrossRefPubMed Bigeleisen PE, Moayeri N, Groen GJ. Extraneural versus intraneural stimulation thresholds during ultrasound-guided supraclavicular block. Anesthesiology. 2009;110(6):1235–43.CrossRefPubMed
8.
go back to reference Hadzic A, Dilberovic F, Shah S, Kulenovic A, Kapur E, Zaciragic A, Cosovic E, Vuckovic I, Divanovic KA, Mornjakovic Z, Thys DM, Santos AC. Combination of intraneural injection and high injection pressure leads to fascicular injury and neurologic deficits in dogs. Reg Anesth Pain Med. 2004;29(5):417–23.CrossRefPubMed Hadzic A, Dilberovic F, Shah S, Kulenovic A, Kapur E, Zaciragic A, Cosovic E, Vuckovic I, Divanovic KA, Mornjakovic Z, Thys DM, Santos AC. Combination of intraneural injection and high injection pressure leads to fascicular injury and neurologic deficits in dogs. Reg Anesth Pain Med. 2004;29(5):417–23.CrossRefPubMed
9.
go back to reference Kapur E, Vuckovic I, Dilberovic F, Zaciragic A, Cosovic E, Divanovic KA, Mornjakovic Z, Babic M, Borgeat A, Thys DM, Hadzic A. Neurologic and histologic outcome after intraneural injections of lidocaine in canine sciatic nerves. Acta Anaesthesiol Scand. 2007;51(1):101–7.CrossRefPubMed Kapur E, Vuckovic I, Dilberovic F, Zaciragic A, Cosovic E, Divanovic KA, Mornjakovic Z, Babic M, Borgeat A, Thys DM, Hadzic A. Neurologic and histologic outcome after intraneural injections of lidocaine in canine sciatic nerves. Acta Anaesthesiol Scand. 2007;51(1):101–7.CrossRefPubMed
10.
go back to reference Gadsden J, McCally C, Hadzic A. Monitoring during peripheral nerve blockade. Curr Opin Anaesthesiol. 2010;23(5):656–61.CrossRefPubMed Gadsden J, McCally C, Hadzic A. Monitoring during peripheral nerve blockade. Curr Opin Anaesthesiol. 2010;23(5):656–61.CrossRefPubMed
11.
go back to reference Wiesmann T, Borntrager A, Vassiliou T, Hadzic A, Wulf H, Muller HH, Steinfeldt T. Minimal current intensity to elicit an evoked motor response cannot discern between needle-nerve contact and intraneural needle insertion. Anesth Analg. 2014;118(3):681–6.CrossRefPubMed Wiesmann T, Borntrager A, Vassiliou T, Hadzic A, Wulf H, Muller HH, Steinfeldt T. Minimal current intensity to elicit an evoked motor response cannot discern between needle-nerve contact and intraneural needle insertion. Anesth Analg. 2014;118(3):681–6.CrossRefPubMed
12.
go back to reference Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics. 2nd ed. San Diego: Academic Press; 2008. Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics. 2nd ed. San Diego: Academic Press; 2008.
13.
go back to reference Bardou P, Merle JC, Woillard JB, Nathan-Denizot N, Beaulieu P. Electrical impedance to detect accidental nerve puncture during ultrasound-guided peripheral nerve blocks. Can J Anaesth. 2012;60(3):253–8.CrossRefPubMed Bardou P, Merle JC, Woillard JB, Nathan-Denizot N, Beaulieu P. Electrical impedance to detect accidental nerve puncture during ultrasound-guided peripheral nerve blocks. Can J Anaesth. 2012;60(3):253–8.CrossRefPubMed
14.
go back to reference Tsui BC, Pillay JJ, Chu KT, Dillane D. Electrical impedance to distinguish intraneural from extraneural needle placement in porcine nerves during direct exposure and ultrasound guidance. Anesthesiology. 2008;109(3):479–83.CrossRefPubMed Tsui BC, Pillay JJ, Chu KT, Dillane D. Electrical impedance to distinguish intraneural from extraneural needle placement in porcine nerves during direct exposure and ultrasound guidance. Anesthesiology. 2008;109(3):479–83.CrossRefPubMed
15.
go back to reference Kalvøy H, Frich L, Grimnes S, Martinsen ØG, Hol PK, Stubhaug A. Impedance-based tissue discrimination for needle guidance. Physiol Meas. 2009;30(2):129.CrossRefPubMed Kalvøy H, Frich L, Grimnes S, Martinsen ØG, Hol PK, Stubhaug A. Impedance-based tissue discrimination for needle guidance. Physiol Meas. 2009;30(2):129.CrossRefPubMed
16.
go back to reference Høyum P, Kalvøy H, Martinsen ØG, Grimnes S. A finite element model of needle electrode spatial sensitivity. Physiol Meas. 2010;31(10):1369–79.CrossRefPubMed Høyum P, Kalvøy H, Martinsen ØG, Grimnes S. A finite element model of needle electrode spatial sensitivity. Physiol Meas. 2010;31(10):1369–79.CrossRefPubMed
18.
go back to reference Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. 1989;17(1):25–104.PubMed Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. 1989;17(1):25–104.PubMed
19.
go back to reference Kalvøy H, Tronstad C, Nordbotten B, Grimnes S, Martinsen ØG. Electrical impedance of stainless steel needle electrodes. Ann Biomed Eng. 2010;38(7):2371–82.CrossRefPubMed Kalvøy H, Tronstad C, Nordbotten B, Grimnes S, Martinsen ØG. Electrical impedance of stainless steel needle electrodes. Ann Biomed Eng. 2010;38(7):2371–82.CrossRefPubMed
20.
go back to reference Franco CD. Connective tissues associated with peripheral nerves. Reg Anesth Pain Med. 2012;37(4):363–5.CrossRefPubMed Franco CD. Connective tissues associated with peripheral nerves. Reg Anesth Pain Med. 2012;37(4):363–5.CrossRefPubMed
21.
go back to reference Moayeri N, Bigeleisen PE, Groen GJ. Quantitative architecture of the brachial plexus and surrounding compartments, and their possible significance for plexus blocks. Anesthesiology. 2008;108(2):299–304.CrossRefPubMed Moayeri N, Bigeleisen PE, Groen GJ. Quantitative architecture of the brachial plexus and surrounding compartments, and their possible significance for plexus blocks. Anesthesiology. 2008;108(2):299–304.CrossRefPubMed
23.
go back to reference Morau D, Levy F, Bringuier S, Biboulet P, Choquet O, Kassim M, Bernard N, Capdevila X. Ultrasound-guided evaluation of the local anesthetic spread parameters required for a rapid surgical popliteal sciatic nerve block. Reg Anesth Pain Med. 2010;35(6):559–64.CrossRefPubMed Morau D, Levy F, Bringuier S, Biboulet P, Choquet O, Kassim M, Bernard N, Capdevila X. Ultrasound-guided evaluation of the local anesthetic spread parameters required for a rapid surgical popliteal sciatic nerve block. Reg Anesth Pain Med. 2010;35(6):559–64.CrossRefPubMed
24.
go back to reference Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41(11):2231–49.CrossRefPubMed Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41(11):2231–49.CrossRefPubMed
25.
go back to reference Gatterer H, Schenk K, Laninschegg L, Schlemmer P, Lukaski H, Burtscher M. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling. PLoS One. 2014;9(10):e109729.CrossRefPubMedPubMedCentral Gatterer H, Schenk K, Laninschegg L, Schlemmer P, Lukaski H, Burtscher M. Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling. PLoS One. 2014;9(10):e109729.CrossRefPubMedPubMedCentral
26.
go back to reference Geddes LA, Da Costa CP, Wise G. The impedance of stainless-steel electrodes. Med Biol Eng. 1971;9(5):511–21.CrossRefPubMed Geddes LA, Da Costa CP, Wise G. The impedance of stainless-steel electrodes. Med Biol Eng. 1971;9(5):511–21.CrossRefPubMed
27.
go back to reference Sauter AR, Dodgson MS, Kalvøy H, Grimnes S, Stubhaug A, Klaastad Ø. Current threshold for nerve stimulation depends on electrical impedance of the tissue: a study of ultrasound-guided electrical nerve stimulation of the median nerve. Anesth Analg. 2009;108(4):1338–43.CrossRefPubMed Sauter AR, Dodgson MS, Kalvøy H, Grimnes S, Stubhaug A, Klaastad Ø. Current threshold for nerve stimulation depends on electrical impedance of the tissue: a study of ultrasound-guided electrical nerve stimulation of the median nerve. Anesth Analg. 2009;108(4):1338–43.CrossRefPubMed
28.
go back to reference Kuo FF. Network analysis and synthesis. New York: Wiley; 1966. Kuo FF. Network analysis and synthesis. New York: Wiley; 1966.
29.
go back to reference Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251.CrossRefPubMed Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251.CrossRefPubMed
30.
go back to reference Martinsen ØG, Kalvøy H, Grimnes S, Nordbotten B, Hol PK, Fosse E, Myklebust H, Becker LB. Invasive electrical impedance tomography for blood vessel detection. Open Biomed Eng J. 2010;4:135–7.CrossRefPubMedPubMedCentral Martinsen ØG, Kalvøy H, Grimnes S, Nordbotten B, Hol PK, Fosse E, Myklebust H, Becker LB. Invasive electrical impedance tomography for blood vessel detection. Open Biomed Eng J. 2010;4:135–7.CrossRefPubMedPubMedCentral
Metadata
Title
Detection of intraneural needle-placement with multiple frequency bioimpedance monitoring: a novel method
Authors
Håvard Kalvøy
Axel R. Sauter
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 2/2016
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-015-9698-3

Other articles of this Issue 2/2016

Journal of Clinical Monitoring and Computing 2/2016 Go to the issue