Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 6/2014

01-12-2014 | Original Research

Measuring gas exchange with step changes in inspired oxygen: an analysis of the assumption of oxygen steady state in patients suffering from COPD

Authors: Lars P. Thomsen, Ulla M. Weinreich, Dan S. Karbing, Peter D. Wagner, Stephen E. Rees

Published in: Journal of Clinical Monitoring and Computing | Issue 6/2014

Login to get access

Abstract

Bedside estimation of pulmonary gas exchange efficiency may be possible from step changes in FiO2 and subsequent measurement of arterial oxygenation at steady state conditions. However, a steady state may not be achieved quickly after a change in FiO2, especially in patients with lung disease such as COPD, rendering this approach cumbersome. This paper investigates whether breath by breath measurement of respiratory gas and arterial oxygen levels as FiO2 is changed can be used as a much more rapid alternative to collecting data from steady state conditions for measuring pulmonary gas exchange efficiency. Fourteen patients with COPD were studied using 4–5 step changes in FiO2 in the range of 0.15–0.35. Values of expired respiratory gas and arterial oxygenation were used to calculate and compare the parameters of a mathematical model of pulmonary gas exchange in two cases: from data at steady state; and from breath by breath data prior to achievement of a steady state. For each patient, the breath by breath data were corrected for the delay in arterial oxygen saturation changes following each change in FiO2. Calculated model parameters were shown to be similar for the two data sets, with Bland–Altman bias and limits of agreement of −0.4 and −3.0 to 2.2 % for calculation of pulmonary shunt and 0.17 and −0.47 to 0.81 kPa for alveolar to end-capillary PO2, a measure of oxygen abnormality due to shunting plus regions of low \({\dot{\text{V}}}\) a/\({\dot{\text{Q}}}\) ratio. This study shows that steady state oxygen levels may not be necessary when estimating pulmonary gas exchange using changes in FiO2. As such this technique may be applicable in patients with lung disease such as COPD.
Literature
1.
go back to reference Karbing DS, Kjaergaard S, Smith BW, Espersen K, Allerod C, Andreassen S, Rees SE. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118.CrossRefPubMedPubMedCentral Karbing DS, Kjaergaard S, Smith BW, Espersen K, Allerod C, Andreassen S, Rees SE. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118.CrossRefPubMedPubMedCentral
2.
go back to reference Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation–perfusion ratios: theory. J Appl Physiol. 1974;36(5):588–99.PubMed Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation–perfusion ratios: theory. J Appl Physiol. 1974;36(5):588–99.PubMed
3.
go back to reference Lenfant C. Measurement of ventilation/perfusion distribution with alveolar–arterial differences. J Appl Physiol. 1963;18(6):1090–4.PubMed Lenfant C. Measurement of ventilation/perfusion distribution with alveolar–arterial differences. J Appl Physiol. 1963;18(6):1090–4.PubMed
4.
go back to reference Rees SE, Kjaergaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The automatic lung parameter estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17(1):43–52.CrossRefPubMed Rees SE, Kjaergaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The automatic lung parameter estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10–15 minutes. J Clin Monit Comput. 2002;17(1):43–52.CrossRefPubMed
5.
go back to reference Thomsen LP, Karbing DS, Smith BW, Murley D, Weinreich UM, Kjærgaard S, Toft E, Thorgaard P, Andreassen S, Rees SE. Clinical refinement of the automatic lung parameter estimator (ALPE). J Clin Monit Comput. 2013;27(3):341–50.CrossRefPubMed Thomsen LP, Karbing DS, Smith BW, Murley D, Weinreich UM, Kjærgaard S, Toft E, Thorgaard P, Andreassen S, Rees SE. Clinical refinement of the automatic lung parameter estimator (ALPE). J Clin Monit Comput. 2013;27(3):341–50.CrossRefPubMed
6.
go back to reference Weinreich UM, Thomsen LP, Hansen A, Kjaergaard S, Wagner PD, Rees SE. Time to steady state after changes in FIO in patients with COPD. COPD. 2013;10(4):405–10.CrossRefPubMed Weinreich UM, Thomsen LP, Hansen A, Kjaergaard S, Wagner PD, Rees SE. Time to steady state after changes in FIO in patients with COPD. COPD. 2013;10(4):405–10.CrossRefPubMed
7.
go back to reference Young D, Jewkes C, Spittal M, Blogg C, Weissman J, Gradwell D. Response time of pulse oximeters assessed using acute decompression. Anesth Analg. 1992;74(2):189–95.CrossRefPubMed Young D, Jewkes C, Spittal M, Blogg C, Weissman J, Gradwell D. Response time of pulse oximeters assessed using acute decompression. Anesth Analg. 1992;74(2):189–95.CrossRefPubMed
8.
go back to reference Zubieta-Calleja GR, Zubieta-Castillo G, Paulev PE, Zubieta-Calleja L. Non-invasive measurement of circulation time using pulse oximetry during breath holding in chronic hypoxia. J Physiol Pharmacol. 2005;56(Suppl 4):251–6.PubMed Zubieta-Calleja GR, Zubieta-Castillo G, Paulev PE, Zubieta-Calleja L. Non-invasive measurement of circulation time using pulse oximetry during breath holding in chronic hypoxia. J Physiol Pharmacol. 2005;56(Suppl 4):251–6.PubMed
9.
go back to reference MacLeod DB, Cortinez LI, Keifer JC, Cameron D, Wright DR, White WD, Moretti EW, Radulescu LR, Somma J. The desaturation response time of finger pulse oximeters during mild hypothermia. Anaesthesia. 2005;60(1):65–71.CrossRefPubMed MacLeod DB, Cortinez LI, Keifer JC, Cameron D, Wright DR, White WD, Moretti EW, Radulescu LR, Somma J. The desaturation response time of finger pulse oximeters during mild hypothermia. Anaesthesia. 2005;60(1):65–71.CrossRefPubMed
10.
go back to reference Yönt GH, Korhan EA, Khorshid L. Comparison of oxygen saturation values and measurement times by pulse oximetry in various parts of the body. Appl Nurs Res. 2011;24(4):e39–43.CrossRefPubMed Yönt GH, Korhan EA, Khorshid L. Comparison of oxygen saturation values and measurement times by pulse oximetry in various parts of the body. Appl Nurs Res. 2011;24(4):e39–43.CrossRefPubMed
11.
go back to reference Ding ZN, Shibata K, Yamamoto K, Kobayashi T, Murakami S. Decreased circulation time in the upper limb reduces the lag time of the finger pulse oximeter response. Can J Anaesth. 1992;39(1):87–9.CrossRefPubMed Ding ZN, Shibata K, Yamamoto K, Kobayashi T, Murakami S. Decreased circulation time in the upper limb reduces the lag time of the finger pulse oximeter response. Can J Anaesth. 1992;39(1):87–9.CrossRefPubMed
12.
go back to reference Shamir M, Eidelman L, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth. 1999;82(2):178–81.CrossRefPubMed Shamir M, Eidelman L, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth. 1999;82(2):178–81.CrossRefPubMed
13.
go back to reference Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation–perfusion mismatch. Intensive Care Med. 2003;29(5):727–34.CrossRefPubMed Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, Andreassen S. Non-invasive estimation of shunt and ventilation–perfusion mismatch. Intensive Care Med. 2003;29(5):727–34.CrossRefPubMed
14.
go back to reference Karbing DS, Kjaergaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33(2):240–8.CrossRefPubMed Karbing DS, Kjaergaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33(2):240–8.CrossRefPubMed
15.
go back to reference Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol. 1982;50(2):255–62.CrossRefPubMed Brent BN, Berger HJ, Matthay RA, Mahler D, Pytlik L, Zaret BL. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study. Am J Cardiol. 1982;50(2):255–62.CrossRefPubMed
16.
go back to reference Biernacki W, Flenley D, Muir A, MacNee W. Pulmonary hypertension and right ventricular function in patients with COPD. CHEST J. 1988;94(6):1169–75.CrossRef Biernacki W, Flenley D, Muir A, MacNee W. Pulmonary hypertension and right ventricular function in patients with COPD. CHEST J. 1988;94(6):1169–75.CrossRef
17.
go back to reference Agustí A, Barbera JA. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax. 1994;49(9):924–32.CrossRefPubMedPubMedCentral Agustí A, Barbera JA. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax. 1994;49(9):924–32.CrossRefPubMedPubMedCentral
18.
go back to reference Rodríguez-Roisin R, Drakulovic M, Rodríguez DA, Roca J, Barberà JA, Wagner PD. Ventilation–perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol. 2009;106(6):1902–8.CrossRefPubMed Rodríguez-Roisin R, Drakulovic M, Rodríguez DA, Roca J, Barberà JA, Wagner PD. Ventilation–perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol. 2009;106(6):1902–8.CrossRefPubMed
19.
go back to reference Hambraeus-Jonzon K, Bindslev L, Mellgard AJ, Hedenstierna G. Hypoxic pulmonary vasoconstriction in human lungs: a stimulus-response study. Anesthesiology. 1997;86(2):308–15.CrossRefPubMed Hambraeus-Jonzon K, Bindslev L, Mellgard AJ, Hedenstierna G. Hypoxic pulmonary vasoconstriction in human lungs: a stimulus-response study. Anesthesiology. 1997;86(2):308–15.CrossRefPubMed
20.
go back to reference Rees SE. The intelligent ventilator (INVENT) project: the role of mathematical models in translating physiological knowledge into clinical practice. Comput Methods Programs Biomed. 2011;104:S1–29.CrossRefPubMed Rees SE. The intelligent ventilator (INVENT) project: the role of mathematical models in translating physiological knowledge into clinical practice. Comput Methods Programs Biomed. 2011;104:S1–29.CrossRefPubMed
Metadata
Title
Measuring gas exchange with step changes in inspired oxygen: an analysis of the assumption of oxygen steady state in patients suffering from COPD
Authors
Lars P. Thomsen
Ulla M. Weinreich
Dan S. Karbing
Peter D. Wagner
Stephen E. Rees
Publication date
01-12-2014
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 6/2014
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-014-9622-2

Other articles of this Issue 6/2014

Journal of Clinical Monitoring and Computing 6/2014 Go to the issue