Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 2/2020

01-02-2020 | Infertility | Genetics

A contiguous microdeletion syndrome at Xp23.13 with non-obstructive azoospermia and congenital cataracts

Authors: Aubrey Milunsky, Jeff M. Milunsky, Weilai Dong, Hayk Hovhannisyan, Robert D. Oates

Published in: Journal of Assisted Reproduction and Genetics | Issue 2/2020

Login to get access

Abstract

Non-obstructive azoospermia accounts for 10–15% of male infertility, resulting in 60% of all cases of azoospermia and affecting about 1% of the male population. About 30% of these cases are due to Y chromosome microdeletions, chromosome abnormalities, or hormonal disorders. Pathogenic variants in genes on the sex chromosomes have key roles in spermatogenic failure. The co-occurrence of azoospermia and congenital cataracts ranges between 1 in 165,000 and 1 in 500,000. Our 28-year-old patient with normal intelligence and abnormally shaped teeth presented with both disorders. A microarray revealed a microdeletion at Xp23.13 with a whole NHS gene deletion as well as a contiguous deletion of two other genes [SCML1 and RAI2]. This observation represents the first report of non-obstructive azoospermia with congenital cataracts and a contiguous deletion of the SCML1 gene, a transcript of which is exclusively expressed in the testis. SCML1 is the putative culprit gene, which requires functional study or animal experiments. Our analysis of 60 known spermatogenesis failure-related genes by whole-exome sequencing revealed no other candidate. The Nance-Horan syndrome due to pathogenic variants in the NHS gene at Xp23.13 including whole gene deletion does not have azoospermia as a feature. Our report adds to the completeness of genetic counseling for an individual with azoospermia and congenital cataracts.
Literature
1.
go back to reference Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16(1):14.CrossRef Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16(1):14.CrossRef
2.
go back to reference Cannarella R, Condorelli RA, Duca Y, La Vignera S, Calogero AE. New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet. 2019;138(2):125–40.CrossRef Cannarella R, Condorelli RA, Duca Y, La Vignera S, Calogero AE. New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet. 2019;138(2):125–40.CrossRef
3.
go back to reference Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci. 2003;100(21):12201–6.CrossRef Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci. 2003;100(21):12201–6.CrossRef
4.
go back to reference Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.CrossRef Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.CrossRef
5.
go back to reference Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37.CrossRef Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37.CrossRef
6.
go back to reference Jarow JP, Sharlip ID, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. J Urol. 2002;167(5):2138–44.CrossRef Jarow JP, Sharlip ID, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. J Urol. 2002;167(5):2138–44.CrossRef
7.
go back to reference Daien V, Le Pape A, Heve D, Villain M, Gignac DB. Incidence and characteristics of congenital cataract surgery in France from 2010 to 2012: the EPISAFE program. Ophthalmic Res. 2017;58(2):114–6.CrossRef Daien V, Le Pape A, Heve D, Villain M, Gignac DB. Incidence and characteristics of congenital cataract surgery in France from 2010 to 2012: the EPISAFE program. Ophthalmic Res. 2017;58(2):114–6.CrossRef
8.
go back to reference Magnusson G, Haargaard B, Basit S, Lundvall A, Nyström A, Rosensvärd A, et al. The Paediatric Cataract Register (PECARE): an overview of operated childhood cataract in Sweden and Denmark. Acta Ophthalmol. 2018;96(1):51–5.CrossRef Magnusson G, Haargaard B, Basit S, Lundvall A, Nyström A, Rosensvärd A, et al. The Paediatric Cataract Register (PECARE): an overview of operated childhood cataract in Sweden and Denmark. Acta Ophthalmol. 2018;96(1):51–5.CrossRef
9.
go back to reference Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res. 2017;156:95–102.CrossRef Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res. 2017;156:95–102.CrossRef
10.
go back to reference Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.CrossRef Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.CrossRef
11.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRef
12.
go back to reference DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.CrossRef DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.CrossRef
13.
go back to reference Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1):11–0.CrossRef Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1):11–0.CrossRef
14.
go back to reference Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.CrossRef Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.CrossRef
15.
go back to reference Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536(7616):285–91. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536(7616):285–91.
16.
go back to reference Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125–37.CrossRef Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125–37.CrossRef
17.
go back to reference Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genetics in Medicine. 2019;21(5):1209–17.CrossRef Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genetics in Medicine. 2019;21(5):1209–17.CrossRef
18.
go back to reference Brooks SP, Ebenezer ND, Poopalasundaram S, Lehmann OJ, Moore AT, Hardcastle AJ. Identification of the gene for Nance-Horan syndrome (NHS). J Med Genet. 2004;41(10):768–71.CrossRef Brooks SP, Ebenezer ND, Poopalasundaram S, Lehmann OJ, Moore AT, Hardcastle AJ. Identification of the gene for Nance-Horan syndrome (NHS). J Med Genet. 2004;41(10):768–71.CrossRef
19.
go back to reference Liao HM, Niu DM, Chen YJ, Fang JS, Chen SJ, Chen CH. Identification of a microdeletion at Xp22. 13 in a Taiwanese family presenting with Nance-Horan syndrome. Journal of Human Genetics. 2011;56(1):8.CrossRef Liao HM, Niu DM, Chen YJ, Fang JS, Chen SJ, Chen CH. Identification of a microdeletion at Xp22. 13 in a Taiwanese family presenting with Nance-Horan syndrome. Journal of Human Genetics. 2011;56(1):8.CrossRef
20.
go back to reference Accogli A, Traverso M, Madia F, Bellini T, Vari MS, Pinto F, et al. A novel Xp22. 13 microdeletion in Nance-Horan syndrome. Birth Defects Research. 2017;109(11):866–8.CrossRef Accogli A, Traverso M, Madia F, Bellini T, Vari MS, Pinto F, et al. A novel Xp22. 13 microdeletion in Nance-Horan syndrome. Birth Defects Research. 2017;109(11):866–8.CrossRef
21.
go back to reference Ling C, Sui R, Yao F, Wu Z, Zhang X, Zhang S. Whole exome sequencing identified a novel truncation mutation in the NHS gene associated with Nance-Horan syndrome. BMC Medical Genetics. 2019;20(1):14.CrossRef Ling C, Sui R, Yao F, Wu Z, Zhang X, Zhang S. Whole exome sequencing identified a novel truncation mutation in the NHS gene associated with Nance-Horan syndrome. BMC Medical Genetics. 2019;20(1):14.CrossRef
22.
go back to reference Mitchell MJ, Metzler-Guillemain C, Toure A, Coutton C, Arnoult C, Ray PF. Single gene defects leading to sperm quantitative anomalies. Clin Genet. 2017;91(2):208–16.CrossRef Mitchell MJ, Metzler-Guillemain C, Toure A, Coutton C, Arnoult C, Ray PF. Single gene defects leading to sperm quantitative anomalies. Clin Genet. 2017;91(2):208–16.CrossRef
23.
go back to reference Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JMA. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet. 2008;40(6):794–9.CrossRef Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JMA. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet. 2008;40(6):794–9.CrossRef
24.
go back to reference Bökenkamp A, Ludwig M. The oculocerebrorenal syndrome of Lowe: an update. Pediatr Nephrol. 2016;31(12):2201–12.CrossRef Bökenkamp A, Ludwig M. The oculocerebrorenal syndrome of Lowe: an update. Pediatr Nephrol. 2016;31(12):2201–12.CrossRef
25.
go back to reference Hervé D, Touraine P, Verloes A, Miskinyte S, Krivosic V, Logeart D, et al. A hereditary moyamoya syndrome with multisystemic manifestations. Neurology. 2010;75(3):259–64.CrossRef Hervé D, Touraine P, Verloes A, Miskinyte S, Krivosic V, Logeart D, et al. A hereditary moyamoya syndrome with multisystemic manifestations. Neurology. 2010;75(3):259–64.CrossRef
26.
go back to reference Reches A, Yaron Y, Burdon K, Crystal-Shalit O, Kidron D, Malcov M, et al. Prenatal detection of congenital bilateral cataract leading to the diagnosis of Nance-Horan syndrome in the extended family. Prenatal Diagnosis: Published in Affiliation with the International Society for Prenatal Diagnosis. 2007;27(7):662–4.CrossRef Reches A, Yaron Y, Burdon K, Crystal-Shalit O, Kidron D, Malcov M, et al. Prenatal detection of congenital bilateral cataract leading to the diagnosis of Nance-Horan syndrome in the extended family. Prenatal Diagnosis: Published in Affiliation with the International Society for Prenatal Diagnosis. 2007;27(7):662–4.CrossRef
27.
go back to reference Wu HH, Su B. Adaptive evolution of SCMLI in primates, a gene involved in male reproduction. BMC Evol Biol. 2008;8(1):192.CrossRef Wu HH, Su B. Adaptive evolution of SCMLI in primates, a gene involved in male reproduction. BMC Evol Biol. 2008;8(1):192.CrossRef
Metadata
Title
A contiguous microdeletion syndrome at Xp23.13 with non-obstructive azoospermia and congenital cataracts
Authors
Aubrey Milunsky
Jeff M. Milunsky
Weilai Dong
Hayk Hovhannisyan
Robert D. Oates
Publication date
01-02-2020
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 2/2020
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-019-01685-6

Other articles of this Issue 2/2020

Journal of Assisted Reproduction and Genetics 2/2020 Go to the issue