Skip to main content
Top
Published in: International Ophthalmology 4/2021

Open Access 01-04-2021 | Original Paper

Comprehensive evaluation of corneas from normal, forme fruste keratoconus and clinical keratoconus patients using morphological and biomechanical properties

Authors: Hui Zhang, Lei Tian, Lili Guo, Xiao Qin, Di Zhang, Lin Li, Ying Jie, Haixia Zhang

Published in: International Ophthalmology | Issue 4/2021

Login to get access

Abstract

Objective

To more comprehensively evaluate the ability of the parameters reflecting the morphological and biomechanical properties of the cornea to distinguish clinical keratoconus (CKC) and forme fruste keratoconus (FFKC) from normal.

Methods

Normal eyes (n = 50), CKC (n = 45) and FFKC (n = 15) were analyzed using Pentacam, Corvis ST and ORA. Stepwise logistic regression of all parameters was performed to obtain the optimal combination model capable of distinguishing CKC, FFKC from normal, named SLR1 and SLR2, respectively. Receiver operating characteristic (ROC) curves were applied to determine the predictive accuracy of the parameters and the two combination models, as described by the area under the curve (AUC). AUCs were compared using the DeLong method.

Results

The SLR1 model included only the TBI output by Pentacam, while the SLR2 model included the morphological parameter F.Ele.Th and two parameters from the Corvis ST, HC DfA and SP-A1. The majority of the parameters had sufficient strength to differentiate the CKC from normal corneas, even the seven separate parameters and the SLR1 model had a discrimination efficiency of 100%. The predictive accuracy of the parameters was moderate for FFKC, and the SLR2 model (0.965) presented an excellent AUC, followed by TBI, F.Ele.Th and BAD-D.

Conclusion

The F.Ele.Th from Pentacam was the most sensitive morphological parameter for FFKC, and the combination of F.Ele.Th, HC DfA and SP-A1 made the diagnosis of FFKC more efficient. The CRF and CH output by ORA did not improve the combined diagnosis, despite the corneal combination of morphological and biomechanical properties that optimized the diagnosis of FFKC.
Literature
2.
go back to reference Krachmer JH, Feder RS, Belin MW (1984) Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 28:293–322CrossRef Krachmer JH, Feder RS, Belin MW (1984) Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 28:293–322CrossRef
3.
go back to reference Muftuoglu O, Ayar O, Ozulken K, Ozyol E, Akıncı A (2013) Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 39:1348–1357CrossRef Muftuoglu O, Ayar O, Ozulken K, Ozyol E, Akıncı A (2013) Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 39:1348–1357CrossRef
4.
go back to reference Meek KM, Tuft SJ, Huang Y et al (2005) Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 46:1948–1956CrossRef Meek KM, Tuft SJ, Huang Y et al (2005) Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 46:1948–1956CrossRef
5.
go back to reference Catalán-López S, Cadarso-Suárez L, López-Ratón M, Cadarso-Suárez C (2018) Corneal biomechanics in unilateral keratoconus and fellow eyes with a scheimpflug-based tonometer. Optom Vis Sci 95:608–615CrossRef Catalán-López S, Cadarso-Suárez L, López-Ratón M, Cadarso-Suárez C (2018) Corneal biomechanics in unilateral keratoconus and fellow eyes with a scheimpflug-based tonometer. Optom Vis Sci 95:608–615CrossRef
6.
go back to reference Herber R, Ramm L, Spoerl E, Raiskup F, Pillunat LE, Terai N (2019) Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J Cataract Refract Surg 45:778–788CrossRef Herber R, Ramm L, Spoerl E, Raiskup F, Pillunat LE, Terai N (2019) Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J Cataract Refract Surg 45:778–788CrossRef
7.
go back to reference Chan TC, Wang YM, Yu M, Jhanji V (2018) Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus. Br J Ophthalmol 102:42–47CrossRef Chan TC, Wang YM, Yu M, Jhanji V (2018) Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus. Br J Ophthalmol 102:42–47CrossRef
8.
go back to reference Steinberg J, Siebert M, Katz T et al (2018) Tomographic and biomechanical scheimpflug imaging for keratoconus characterization: a validation of current indices. J Refract Surg 34:840–847CrossRef Steinberg J, Siebert M, Katz T et al (2018) Tomographic and biomechanical scheimpflug imaging for keratoconus characterization: a validation of current indices. J Refract Surg 34:840–847CrossRef
9.
go back to reference Ferreira-Mendes J, Lopes BT, Faria-Correia F, Salomão MQ, Rodrigues-Barros S, Ambrósio R Jr (2019) Enhanced Ectasia detection using corneal tomography and biomechanics. Am J Ophthalmol 197:7–16CrossRef Ferreira-Mendes J, Lopes BT, Faria-Correia F, Salomão MQ, Rodrigues-Barros S, Ambrósio R Jr (2019) Enhanced Ectasia detection using corneal tomography and biomechanics. Am J Ophthalmol 197:7–16CrossRef
10.
go back to reference Luz A, Lopes B, Hallahan KM et al (2016) Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg 32:479–494CrossRef Luz A, Lopes B, Hallahan KM et al (2016) Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg 32:479–494CrossRef
11.
go back to reference Ahmadi Hosseini SM, Abolbashari F, Niyazmand H, Sedaghat MR (2014) Efficacy of corneal tomography parameters and biomechanical characteristic in keratoconus detection. Cont Lens Anterior Eye 37:26–30CrossRef Ahmadi Hosseini SM, Abolbashari F, Niyazmand H, Sedaghat MR (2014) Efficacy of corneal tomography parameters and biomechanical characteristic in keratoconus detection. Cont Lens Anterior Eye 37:26–30CrossRef
12.
go back to reference Schlegel Z, Hoang-Xuan T, Gatinel D (2008) Comparison of and correlation between anterior and posterior corneal elevation maps in normal eyes and keratoconus-suspect eyes. J Cataract Refract Surg 34:789–795CrossRef Schlegel Z, Hoang-Xuan T, Gatinel D (2008) Comparison of and correlation between anterior and posterior corneal elevation maps in normal eyes and keratoconus-suspect eyes. J Cataract Refract Surg 34:789–795CrossRef
14.
go back to reference Cui J, Zhang X, Hu Q, Zhou WY, Yang F (2016) Evaluation of corneal thickness and volume parameters of subclinical keratoconus using a pentacam scheimflug system. Curr Eye Res 41:923–926CrossRef Cui J, Zhang X, Hu Q, Zhou WY, Yang F (2016) Evaluation of corneal thickness and volume parameters of subclinical keratoconus using a pentacam scheimflug system. Curr Eye Res 41:923–926CrossRef
16.
go back to reference Peña-García P, Peris-Martínez C, Abbouda A, Ruiz-Moreno JM (2016) Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech 49:353–363CrossRef Peña-García P, Peris-Martínez C, Abbouda A, Ruiz-Moreno JM (2016) Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech 49:353–363CrossRef
17.
go back to reference Fontes BM, Ambrósio R Jr, Jardim D, Velarde GC, Nosé W (2010) Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 117:673–679CrossRef Fontes BM, Ambrósio R Jr, Jardim D, Velarde GC, Nosé W (2010) Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 117:673–679CrossRef
18.
go back to reference Terai N, Raiskup F, Haustein M, Pillunat LE, Spoerl E (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562CrossRef Terai N, Raiskup F, Haustein M, Pillunat LE, Spoerl E (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562CrossRef
19.
go back to reference Wang YM, Chan TCY, Yu M, Jhanji V (2017) Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes. J Refract Surg 33:632–638CrossRef Wang YM, Chan TCY, Yu M, Jhanji V (2017) Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes. J Refract Surg 33:632–638CrossRef
20.
go back to reference Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrósio R Jr (2019) Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg 45:328–336CrossRef Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrósio R Jr (2019) Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg 45:328–336CrossRef
21.
go back to reference Ambrósio R Jr, Lopes BT, Faria-Correia F et al (2017) Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443CrossRef Ambrósio R Jr, Lopes BT, Faria-Correia F et al (2017) Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443CrossRef
22.
go back to reference Vinciguerra R, Ambrósio R Jr, Elsheikh A et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810CrossRef Vinciguerra R, Ambrósio R Jr, Elsheikh A et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810CrossRef
23.
go back to reference Roberts CJ, Mahmoud AM, Bons JP et al (2017) Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic scheimpflug analyzer. J Refract Surg 33:266–273CrossRef Roberts CJ, Mahmoud AM, Bons JP et al (2017) Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic scheimpflug analyzer. J Refract Surg 33:266–273CrossRef
24.
go back to reference Du XL, Chen M, Xie LX (2015) Correlation of basic indicators with stages of keratoconus assessed by Pentacam tomography. Int J Ophthalmol 8:1136–1140PubMedPubMedCentral Du XL, Chen M, Xie LX (2015) Correlation of basic indicators with stages of keratoconus assessed by Pentacam tomography. Int J Ophthalmol 8:1136–1140PubMedPubMedCentral
26.
go back to reference Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 48:3026–3031CrossRef Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I (2007) Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 48:3026–3031CrossRef
Metadata
Title
Comprehensive evaluation of corneas from normal, forme fruste keratoconus and clinical keratoconus patients using morphological and biomechanical properties
Authors
Hui Zhang
Lei Tian
Lili Guo
Xiao Qin
Di Zhang
Lin Li
Ying Jie
Haixia Zhang
Publication date
01-04-2021
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 4/2021
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-020-01679-9

Other articles of this Issue 4/2021

International Ophthalmology 4/2021 Go to the issue