Skip to main content
Top
Published in: International Ophthalmology 8/2020

Open Access 01-08-2020 | Angiography | Original Paper

Swept-source optical coherence tomography angiography alleviates shadowing artifacts caused by subretinal fluid

Authors: Michael Reich, Daniel Boehringer, Kai Rothaus, Bertan Cakir, Felicitas Bucher, Moritz Daniel, Stefan J. Lang, Wolf A. Lagrèze, Hansjuergen Agostini, Clemens Lange

Published in: International Ophthalmology | Issue 8/2020

Login to get access

Abstract

Purpose

To characterize the choriocapillaris (CC) structure in relation to subretinal fluid (SRF) as a possible systematic error source using spectral domain (SD-OCTA) compared to swept-source optical coherence tomography angiography (SS-OCTA).

Methods

This is a prospective case-control study of 23 eyes. Ten patients with acute central serous chorioretinopathy (CSC), three patients with partial macular-off retinal detachment (RD) and ten healthy, age-matched controls were included. Abnormal CC decorrelation signals were quantitatively compared in CSC and controls by means of custom image processing. To investigate the influence of SRF on CC OCTA signal, the extent of SRF was quantified with a macular heatmap and compared with the corresponding OCTA signal of the CC.

Results

SS-OCTA yielded a more homogeneous OCTA signal from the CC than SD-OCTA, offering less signal dispersion and variability in healthy and diseased eyes. Both devices demonstrated CC signal voids in CSC and RD, respectively. In CCS, the voids were predominantly located in the area with SRF. Compared to SD-OCTA, SS-OCTA delivered a more homogenous OCTA signal and reduced signal voids in the CC underneath SRF in both RD and CSC (CSC, 7.6% ± 6.3% vs, 19.7% ± 9.6%, p < 0.01). Despite this significant attenuation of signal voids, SS-OCTA continued to reveal signal voids below SRF and more pixels with reduced OCTA signals in CSC patients compared to controls (7.6% ± 6.3%, 0.1% ± 0.1%, p < 0.0001).

Conclusion

Understanding OCTA artifacts is critical to ensure accurate clinical evaluations. In this study, we describe the presence of SRF as an important shadow-causing artifact source for CC OCTA analysis which can be mitigated but not completely eliminated by employing SS-OCTA.
Literature
1.
go back to reference Lauermann JL, Eter N, Alten F (2018) Optical coherence tomography angiography offers new insights into choriocapillaris perfusion. Ophthalmologica 239(2–3):74–84PubMed Lauermann JL, Eter N, Alten F (2018) Optical coherence tomography angiography offers new insights into choriocapillaris perfusion. Ophthalmologica 239(2–3):74–84PubMed
2.
go back to reference Fingler J, Readhead C, Schwartz DM, Fraser SE (2008) Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. Invest Ophthalmol Vis Sci 49(11):5055–5059PubMed Fingler J, Readhead C, Schwartz DM, Fraser SE (2008) Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. Invest Ophthalmol Vis Sci 49(11):5055–5059PubMed
3.
go back to reference Koustenis A Jr, Harris A, Gross J et al (2017) Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 101(1):16–20PubMed Koustenis A Jr, Harris A, Gross J et al (2017) Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 101(1):16–20PubMed
4.
go back to reference Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35(11):2163–2180PubMedPubMedCentral Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence tomography angiography. Retina 35(11):2163–2180PubMedPubMedCentral
5.
go back to reference Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50PubMed Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50PubMed
6.
go back to reference Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725PubMedPubMedCentral Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725PubMedPubMedCentral
7.
go back to reference Reich M, Boehringer D, Cakir B, Bucher F, Daniel M, Lang S, Lagrèze W, Agostini H, Lange C (2019) Longitudinal analysis of the choriocapillaris using optical coherence tomography angiography reveals subretinal fluid as a substantial confounder in patients with acute central serous chorioretinopathy. Ophthalmol Ther 8(4):599–610PubMedPubMedCentral Reich M, Boehringer D, Cakir B, Bucher F, Daniel M, Lang S, Lagrèze W, Agostini H, Lange C (2019) Longitudinal analysis of the choriocapillaris using optical coherence tomography angiography reveals subretinal fluid as a substantial confounder in patients with acute central serous chorioretinopathy. Ophthalmol Ther 8(4):599–610PubMedPubMedCentral
8.
go back to reference Wang M, Munch IC, Hasler PW, Prunte C, Larsen M (2008) Central serous chorioretinopathy. Acta Ophthalmol 86(2):126–145PubMed Wang M, Munch IC, Hasler PW, Prunte C, Larsen M (2008) Central serous chorioretinopathy. Acta Ophthalmol 86(2):126–145PubMed
9.
go back to reference Adhi M, Liu JJ, Qavi AH et al (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157(6):1272–1281PubMed Adhi M, Liu JJ, Qavi AH et al (2014) Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am J Ophthalmol 157(6):1272–1281PubMed
11.
go back to reference Wang F, Zhang Q, Deegan AJ, Chang J, Wang RK (2018) Comparing imaging capabilities of spectral domain and swept source optical coherence tomography angiography in healthy subjects and central serous retinopathy. Eye Vis (Lond) 5:19 Wang F, Zhang Q, Deegan AJ, Chang J, Wang RK (2018) Comparing imaging capabilities of spectral domain and swept source optical coherence tomography angiography in healthy subjects and central serous retinopathy. Eye Vis (Lond) 5:19
12.
go back to reference Cakir B, Reich M, Lang S et al (2019) OCT angiography of the choriocapillaris in central serous chorioretinopathy: a Quantitative subgroup analysis. Ophthalmol Ther 8(1):75–86PubMedPubMedCentral Cakir B, Reich M, Lang S et al (2019) OCT angiography of the choriocapillaris in central serous chorioretinopathy: a Quantitative subgroup analysis. Ophthalmol Ther 8(1):75–86PubMedPubMedCentral
13.
go back to reference Cakir B, Reich M, Lang SJ et al (2017) Possibilities and limitations of OCT-angiography in patients with central serous chorioretinopathy. Klin Monbl Augenheilkd 234(9):1161–1168PubMed Cakir B, Reich M, Lang SJ et al (2017) Possibilities and limitations of OCT-angiography in patients with central serous chorioretinopathy. Klin Monbl Augenheilkd 234(9):1161–1168PubMed
15.
go back to reference Costanzo E, Cohen SY, Miere A et al (2015) Optical coherence tomography angiography in central serous chorioretinopathy. J Ophthalmol 2015:134783PubMedPubMedCentral Costanzo E, Cohen SY, Miere A et al (2015) Optical coherence tomography angiography in central serous chorioretinopathy. J Ophthalmol 2015:134783PubMedPubMedCentral
16.
go back to reference Teussink MM, Breukink MB, van Grinsven MJ et al (2015) OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci 56(9):5229–5237PubMed Teussink MM, Breukink MB, van Grinsven MJ et al (2015) OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci 56(9):5229–5237PubMed
17.
go back to reference Matet A, Daruich A, Hardy S, Behar-Cohen F (2019) Patterns of choriocapillaris flow signal voids in central serous chorioretinopathy: an optical coherence tomography angiography study. Retina 39(11):2178–2188PubMed Matet A, Daruich A, Hardy S, Behar-Cohen F (2019) Patterns of choriocapillaris flow signal voids in central serous chorioretinopathy: an optical coherence tomography angiography study. Retina 39(11):2178–2188PubMed
18.
go back to reference Dodo Y, Murakami T, Suzuma K et al (2017) Diabetic neuroglial changes in the superficial and deep nonperfused areas on optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(13):5870–5879PubMed Dodo Y, Murakami T, Suzuma K et al (2017) Diabetic neuroglial changes in the superficial and deep nonperfused areas on optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(13):5870–5879PubMed
19.
go back to reference Borrelli E, Uji A, Sarraf D, Sadda SR (2017) Alterations in the Choriocapillaris in Intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 58(11):4792–4798PubMed Borrelli E, Uji A, Sarraf D, Sadda SR (2017) Alterations in the Choriocapillaris in Intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 58(11):4792–4798PubMed
20.
go back to reference Tan CS, Ngo WK, Cheong KX (2015) Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol 99(3):354–358PubMed Tan CS, Ngo WK, Cheong KX (2015) Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol 99(3):354–358PubMed
21.
go back to reference Matsuo Y, Sakamoto T, Yamashita T et al (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54(12):7630–7636PubMed Matsuo Y, Sakamoto T, Yamashita T et al (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54(12):7630–7636PubMed
22.
go back to reference Dinc UA, Tatlipinar S, Yenerel M, Gorgun E, Ciftci F (2011) Fundus autofluorescence in acute and chronic central serous chorioretinopathy. Clin Exp Optom 94(5):452–457PubMed Dinc UA, Tatlipinar S, Yenerel M, Gorgun E, Ciftci F (2011) Fundus autofluorescence in acute and chronic central serous chorioretinopathy. Clin Exp Optom 94(5):452–457PubMed
23.
go back to reference Hu J, Qu J, Piao Z et al (2019) Optical coherence tomography angiography compared with indocyanine green angiography in central serous chorioretinopathy. Sci Rep 9(1):6149PubMedPubMedCentral Hu J, Qu J, Piao Z et al (2019) Optical coherence tomography angiography compared with indocyanine green angiography in central serous chorioretinopathy. Sci Rep 9(1):6149PubMedPubMedCentral
24.
go back to reference Shinojima A, Kawamura A, Mori R, Fujita K, Yuzawa M (2016) Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy. Ophthalmologica 236(2):108–113PubMed Shinojima A, Kawamura A, Mori R, Fujita K, Yuzawa M (2016) Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy. Ophthalmologica 236(2):108–113PubMed
25.
go back to reference Scheider A, Hintschich C, Dimitriou S (1994) Central serous chorioretinopathy. studies of the site of the lesion with indocyanine green. Ophthalmologe 91(6):745–751PubMed Scheider A, Hintschich C, Dimitriou S (1994) Central serous chorioretinopathy. studies of the site of the lesion with indocyanine green. Ophthalmologe 91(6):745–751PubMed
26.
go back to reference Kitaya N, Nagaoka T, Hikichi T et al (2003) Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol 87(6):709–712PubMedPubMedCentral Kitaya N, Nagaoka T, Hikichi T et al (2003) Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol 87(6):709–712PubMedPubMedCentral
27.
go back to reference Yoshioka H, Katsume Y (1982) Experimental central serous chorioretinopathy. III: ultrastructural findings. Jpn J Ophthalmol 26(4):397–409PubMed Yoshioka H, Katsume Y (1982) Experimental central serous chorioretinopathy. III: ultrastructural findings. Jpn J Ophthalmol 26(4):397–409PubMed
28.
go back to reference Piccolino FC, Borgia L (1994) Central serous chorioretinopathy and indocyanine green angiography. Retina 14(3):231–242PubMed Piccolino FC, Borgia L (1994) Central serous chorioretinopathy and indocyanine green angiography. Retina 14(3):231–242PubMed
29.
go back to reference Baek J, Kook L, Lee WK (2019) Choriocapillaris flow impairments in association with pachyvessel in early stages of pachychoroid. Sci Rep 9(1):5565PubMedPubMedCentral Baek J, Kook L, Lee WK (2019) Choriocapillaris flow impairments in association with pachyvessel in early stages of pachychoroid. Sci Rep 9(1):5565PubMedPubMedCentral
30.
go back to reference Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36(3):499–516PubMed Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36(3):499–516PubMed
31.
go back to reference Nicolo M, Rosa R, Musetti D et al (2017) Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(4):2002–2010PubMed Nicolo M, Rosa R, Musetti D et al (2017) Choroidal vascular flow area in central serous chorioretinopathy using swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(4):2002–2010PubMed
Metadata
Title
Swept-source optical coherence tomography angiography alleviates shadowing artifacts caused by subretinal fluid
Authors
Michael Reich
Daniel Boehringer
Kai Rothaus
Bertan Cakir
Felicitas Bucher
Moritz Daniel
Stefan J. Lang
Wolf A. Lagrèze
Hansjuergen Agostini
Clemens Lange
Publication date
01-08-2020
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 8/2020
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-020-01376-7

Other articles of this Issue 8/2020

International Ophthalmology 8/2020 Go to the issue