Skip to main content
Top
Published in: International Ophthalmology 1/2019

01-01-2019 | Review

Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature

Authors: Karine Evangelho, Maria Mogilevskaya, Monica Losada-Barragan, Jeinny Karina Vargas-Sanchez

Published in: International Ophthalmology | Issue 1/2019

Login to get access

Abstract

Purpose

Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell.

Methods

A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective.

Results

Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness.

Conclusions

The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma, ischemia and impact of metabolic toxins, which triggers an inflammatory process and secondary degeneration in the ONH.
Literature
1.
go back to reference Osborne NN, Melena J, Chidlow G, Wood JP (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 85(10):1252–1259PubMedPubMedCentralCrossRef Osborne NN, Melena J, Chidlow G, Wood JP (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 85(10):1252–1259PubMedPubMedCentralCrossRef
2.
go back to reference Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279PubMedCrossRef Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279PubMedCrossRef
5.
go back to reference Anderson DR, Drance SM, Schulzer M, Collaborative Normal-Tension Glaucoma Study G (2003) Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 136(5):820–829PubMedCrossRef Anderson DR, Drance SM, Schulzer M, Collaborative Normal-Tension Glaucoma Study G (2003) Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 136(5):820–829PubMedCrossRef
6.
go back to reference Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Investig Ophthalmol Vis Sci 41(11):3460–3466 Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Investig Ophthalmol Vis Sci 41(11):3460–3466
8.
go back to reference Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investig Ophthalmol 13(10):771–783 Anderson DR, Hendrickson A (1974) Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investig Ophthalmol 13(10):771–783
9.
go back to reference Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Investig Ophthalmol Vis Sci 44(2):623–637CrossRef Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF (2003) Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Investig Ophthalmol Vis Sci 44(2):623–637CrossRef
10.
go back to reference Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99(4):635–649PubMedCrossRef Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99(4):635–649PubMedCrossRef
11.
go back to reference Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95(5):673–691PubMedCrossRef Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95(5):673–691PubMedCrossRef
12.
go back to reference Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Investig Ophthalmol Vis Sci 48(10):4597–4607. https://doi.org/10.1167/iovs.07-0349 CrossRef Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF (2007) 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Investig Ophthalmol Vis Sci 48(10):4597–4607. https://​doi.​org/​10.​1167/​iovs.​07-0349 CrossRef
13.
go back to reference Ozcan AA, Ozdemir N, Canataroglu A (2004) The aqueous levels of TGF-beta2 in patients with glaucoma. Int Ophthalmol 25(1):19–22PubMedCrossRef Ozcan AA, Ozdemir N, Canataroglu A (2004) The aqueous levels of TGF-beta2 in patients with glaucoma. Int Ophthalmol 25(1):19–22PubMedCrossRef
14.
go back to reference Naskar R, Dreyer EB (2001) New horizons in neuroprotection. Surv Ophthalmol 45(suppl 3):S250–S255 (discussion S273–S256) PubMedCrossRef Naskar R, Dreyer EB (2001) New horizons in neuroprotection. Surv Ophthalmol 45(suppl 3):S250–S255 (discussion S273–S256) PubMedCrossRef
16.
go back to reference Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61(1):33–44PubMedCrossRef Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61(1):33–44PubMedCrossRef
18.
go back to reference Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, Menage MJ (1992) Prevalence of glaucoma. The beaver dam eye study. Ophthalmology 99(10):1499–1504PubMedCrossRef Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, Menage MJ (1992) Prevalence of glaucoma. The beaver dam eye study. Ophthalmology 99(10):1499–1504PubMedCrossRef
19.
go back to reference Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393PubMedCrossRef Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393PubMedCrossRef
23.
go back to reference Yu DY, Cringle SJ, Alder VA, Su EN (1994) Intraretinal oxygen distribution in rats as a function of systemic blood pressure. Am J Physiol 267(6 Pt 2):H2498–H2507PubMed Yu DY, Cringle SJ, Alder VA, Su EN (1994) Intraretinal oxygen distribution in rats as a function of systemic blood pressure. Am J Physiol 267(6 Pt 2):H2498–H2507PubMed
26.
go back to reference Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208PubMedCrossRef Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20(2):175–208PubMedCrossRef
27.
go back to reference Andrews RM, Griffiths PG, Johnson MA, Turnbull DM (1999) Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br J Ophthalmol 83(2):231–235PubMedPubMedCentralCrossRef Andrews RM, Griffiths PG, Johnson MA, Turnbull DM (1999) Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br J Ophthalmol 83(2):231–235PubMedPubMedCentralCrossRef
28.
go back to reference Delyfer MN, Forster V, Neveux N, Picaud S, Leveillard T, Sahel JA (2005) Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688–696PubMed Delyfer MN, Forster V, Neveux N, Picaud S, Leveillard T, Sahel JA (2005) Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688–696PubMed
29.
go back to reference Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19(3):297–321PubMedCrossRef Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 19(3):297–321PubMedCrossRef
30.
go back to reference Varela HJ, Hernandez MR (1997) Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 6(5):303–313PubMedCrossRef Varela HJ, Hernandez MR (1997) Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 6(5):303–313PubMedCrossRef
34.
go back to reference Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMedCrossRef Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19(8):307–312PubMedCrossRef
37.
go back to reference Gugleta K, Orgul S, Hasler PW, Picornell T, Gherghel D, Flammer J (2003) Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma. Investig Ophthalmol Vis Sci 44(4):1573–1580CrossRef Gugleta K, Orgul S, Hasler PW, Picornell T, Gherghel D, Flammer J (2003) Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma. Investig Ophthalmol Vis Sci 44(4):1573–1580CrossRef
38.
go back to reference Chung HS, Harris A, Evans DW, Kagemann L, Garzozi HJ, Martin B (1999) Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. Surv Ophthalmol 43(Suppl 1):S43–S50PubMedCrossRef Chung HS, Harris A, Evans DW, Kagemann L, Garzozi HJ, Martin B (1999) Vascular aspects in the pathophysiology of glaucomatous optic neuropathy. Surv Ophthalmol 43(Suppl 1):S43–S50PubMedCrossRef
41.
go back to reference Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115(4):497–503PubMedCrossRef Neufeld AH, Hernandez MR, Gonzalez M (1997) Nitric oxide synthase in the human glaucomatous optic nerve head. Arch Ophthalmol 115(4):497–503PubMedCrossRef
42.
go back to reference Liu B, Neufeld AH (2000) Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 30(2):178–186PubMedCrossRef Liu B, Neufeld AH (2000) Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia 30(2):178–186PubMedCrossRef
43.
go back to reference Kaufman PL (1999) Nitric-oxide synthase and neurodegeneration/neuroprotection. Proc Natl Acad Sci USA 96(17):9455–9456PubMedCrossRef Kaufman PL (1999) Nitric-oxide synthase and neurodegeneration/neuroprotection. Proc Natl Acad Sci USA 96(17):9455–9456PubMedCrossRef
45.
go back to reference Kobayashi M, Kuroiwa T, Shimokawa R, Okeda R, Tokoro T (2000) Nitric oxide synthase expression in ischemic rat retinas. Jpn J Ophthalmol 44(3):235–244PubMedCrossRef Kobayashi M, Kuroiwa T, Shimokawa R, Okeda R, Tokoro T (2000) Nitric oxide synthase expression in ischemic rat retinas. Jpn J Ophthalmol 44(3):235–244PubMedCrossRef
52.
go back to reference Crowder RN, El-Deiry WS (2012) Caspase-8 regulation of TRAIL-mediated cell death. Exp Oncol 34(3):160–164PubMed Crowder RN, El-Deiry WS (2012) Caspase-8 regulation of TRAIL-mediated cell death. Exp Oncol 34(3):160–164PubMed
53.
go back to reference Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci Off J Soc Neurosci 20(5):1800–1808CrossRef Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci Off J Soc Neurosci 20(5):1800–1808CrossRef
55.
go back to reference Martins-Ferreira H, Nedergaard M, Nicholson C (2000) Perspectives on spreading depression. Brain Res Brain Res Rev 32(1):215–234PubMedCrossRef Martins-Ferreira H, Nedergaard M, Nicholson C (2000) Perspectives on spreading depression. Brain Res Brain Res Rev 32(1):215–234PubMedCrossRef
56.
go back to reference Singh M, Savitz SI, Hoque R, Gupta G, Roth S, Rosenbaum PS, Rosenbaum DM (2001) Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 77(2):466–475PubMedCrossRef Singh M, Savitz SI, Hoque R, Gupta G, Roth S, Rosenbaum PS, Rosenbaum DM (2001) Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 77(2):466–475PubMedCrossRef
57.
go back to reference Katai N, Yoshimura N (1999) Apoptotic retinal neuronal death by ischemia-reperfusion is executed by two distinct caspase family proteases. Investig Ophthalmol Vis Sci 40(11):2697–2705 Katai N, Yoshimura N (1999) Apoptotic retinal neuronal death by ischemia-reperfusion is executed by two distinct caspase family proteases. Investig Ophthalmol Vis Sci 40(11):2697–2705
58.
go back to reference Sumioka K, Shirai Y, Sakai N, Hashimoto T, Tanaka C, Yamamoto M, Takahashi M, Ono Y, Saito N (2000) Induction of a 55-kDa PKN cleavage product by ischemia/reperfusion model in the rat retina. Investig Ophthalmol Vis Sci 41(1):29–35 Sumioka K, Shirai Y, Sakai N, Hashimoto T, Tanaka C, Yamamoto M, Takahashi M, Ono Y, Saito N (2000) Induction of a 55-kDa PKN cleavage product by ischemia/reperfusion model in the rat retina. Investig Ophthalmol Vis Sci 41(1):29–35
61.
go back to reference Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20(6):799–821PubMedCrossRef Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20(6):799–821PubMedCrossRef
62.
go back to reference Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci Off J Soc Neurosci 15(7 Pt 1):4738–4747CrossRef Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci Off J Soc Neurosci 15(7 Pt 1):4738–4747CrossRef
67.
go back to reference Francke M, Pannicke T, Biedermann B, Faude F, Wiedemann P, Reichenbach A, Reichelt W (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20(3):210–218PubMedCrossRef Francke M, Pannicke T, Biedermann B, Faude F, Wiedemann P, Reichenbach A, Reichelt W (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20(3):210–218PubMedCrossRef
68.
go back to reference Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290PubMedCrossRef Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290PubMedCrossRef
70.
go back to reference Ambati J, Chalam KV, Chawla DK, D’Angio CT, Guillet EG, Rose SJ, Vanderlinde RE, Ambati BK (1997) Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 115(9):1161–1166PubMedCrossRef Ambati J, Chalam KV, Chawla DK, D’Angio CT, Guillet EG, Rose SJ, Vanderlinde RE, Ambati BK (1997) Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 115(9):1161–1166PubMedCrossRef
71.
go back to reference Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Investig Ophthalmol Vis Sci 41(7):1940–1944 Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Investig Ophthalmol Vis Sci 41(7):1940–1944
72.
go back to reference Lucas DR, Newhouse JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201PubMedCrossRef Lucas DR, Newhouse JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201PubMedCrossRef
73.
go back to reference Asensio Sanchez VM, Corral Azor A, Aguirre Aragon B, De Paz Garcia M (2002) Amino acid concentrations in the vitreous body in control subjects. Archivos de la Sociedad Espanola de Oftalmologia 77(11):611–616PubMed Asensio Sanchez VM, Corral Azor A, Aguirre Aragon B, De Paz Garcia M (2002) Amino acid concentrations in the vitreous body in control subjects. Archivos de la Sociedad Espanola de Oftalmologia 77(11):611–616PubMed
74.
go back to reference Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10):465–469PubMedCrossRef Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10):465–469PubMedCrossRef
76.
go back to reference Manabe S, Lipton SA (2003) Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Investig Ophthalmol Vis Sci 44(1):385–392CrossRef Manabe S, Lipton SA (2003) Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Investig Ophthalmol Vis Sci 44(1):385–392CrossRef
77.
go back to reference Dorado C, Rugerio C, Rivas S (2003) Estrés oxidativo y neurodegeneración. Revista de la Facultad de Medicina 46(6):229–235 Dorado C, Rugerio C, Rivas S (2003) Estrés oxidativo y neurodegeneración. Revista de la Facultad de Medicina 46(6):229–235
78.
go back to reference Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Investig Ophthalmol Vis Sci 36(5):774–786 Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Investig Ophthalmol Vis Sci 36(5):774–786
79.
82.
go back to reference Chaudhary P, Ahmed F, Quebada P, Sharma SC (1999) Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 67(1):36–45PubMedCrossRef Chaudhary P, Ahmed F, Quebada P, Sharma SC (1999) Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. Brain Res Mol Brain Res 67(1):36–45PubMedCrossRef
83.
go back to reference Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M (2000) Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 85(1–2):144–150PubMedCrossRef Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M (2000) Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res 85(1–2):144–150PubMedCrossRef
84.
go back to reference Kermer P, Klocker N, Labes M, Thomsen S, Srinivasan A, Bahr M (1999) Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 453(3):361–364PubMedCrossRef Kermer P, Klocker N, Labes M, Thomsen S, Srinivasan A, Bahr M (1999) Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 453(3):361–364PubMedCrossRef
87.
go back to reference Klocker N, Braunling F, Isenmann S, Bahr M (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. NeuroReport 8(16):3439–3442PubMedCrossRef Klocker N, Braunling F, Isenmann S, Bahr M (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. NeuroReport 8(16):3439–3442PubMedCrossRef
88.
go back to reference Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602(2):304–317PubMedCrossRef Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602(2):304–317PubMedCrossRef
89.
go back to reference Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Investig Ophthalmol Vis Sci 37(4):489–500 Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Investig Ophthalmol Vis Sci 37(4):489–500
90.
go back to reference Klocker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci Off J Soc Neurosci 20(18):6962–6967CrossRef Klocker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bahr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci Off J Soc Neurosci 20(18):6962–6967CrossRef
92.
go back to reference Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci Off J Soc Neurosci 20(13):5037–5044CrossRef Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci Off J Soc Neurosci 20(13):5037–5044CrossRef
93.
go back to reference Russelakis-Carneiro M, Silveira LC, Perry VH (1996) Factors affecting the survival of cat retinal ganglion cells after optic nerve injury. J Neurocytol 25(6):393–402PubMedCrossRef Russelakis-Carneiro M, Silveira LC, Perry VH (1996) Factors affecting the survival of cat retinal ganglion cells after optic nerve injury. J Neurocytol 25(6):393–402PubMedCrossRef
95.
go back to reference Yoles E, Schwartz M (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116(7):906–910PubMedCrossRef Yoles E, Schwartz M (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116(7):906–910PubMedCrossRef
99.
go back to reference Stys PK, Jiang Q (2002) Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons. Neurosci Lett 328(2):150–154PubMedCrossRef Stys PK, Jiang Q (2002) Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons. Neurosci Lett 328(2):150–154PubMedCrossRef
101.
go back to reference Nakazawa T, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3 K signaling pathways. Investig Ophthalmol Vis Sci 43(10):3319–3326 Nakazawa T, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3 K signaling pathways. Investig Ophthalmol Vis Sci 43(10):3319–3326
Metadata
Title
Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature
Authors
Karine Evangelho
Maria Mogilevskaya
Monica Losada-Barragan
Jeinny Karina Vargas-Sanchez
Publication date
01-01-2019
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 1/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-017-0795-9

Other articles of this Issue 1/2019

International Ophthalmology 1/2019 Go to the issue