Skip to main content
Top
Published in: International Ophthalmology 3/2018

01-06-2018 | Original Paper

Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness

Authors: Tarannum Mansoori, Jayanthi Sivaswamy, Jahnavi Sai Gamalapati, Nagalla Balakrishna

Published in: International Ophthalmology | Issue 3/2018

Login to get access

Abstract

Purpose

To analyse the expansion of radial peripapillary capillary (RPC) network with optical coherence tomography angiography (OCT-A) in normal human eyes and correlate RPC density with retinal nerve fibre layer thickness (RNFLT) at various distances from the optic nerve head (ONH) edge.

Methods

Fifty eyes of 50 healthy subjects underwent imaging with RTVue XR-100 Avanti OCT. OCT-A scans of Angio disc (6 × 6 mm) and Angio retina (8 × 8 mm) were combined to create a wide-field montage image of the RPC network. RPC density and RNFLT was calculated at different circle diameter around the ONH, and their correlation was measured.

Results

In the arcuate region, RPC was detected as far as 8.5 mm from the ONH edge, but not around the perifoveal area within 0.025 ± 0.01 mm2. The mean RPC density (0.1556 ± 0.015) and RNFLT (245.96 ± 5.79) were highest at 1.5 mm from ONH margin, and there was a trend in its decline, in a distance-dependent manner, with the least density at 8.5 mm (all P < 0.0001). Highest RPC density was noted in the arcuate fibre region at all the distances. Overall mean RPC density correlated significantly (P < 0.0001) with the overall mean RNFLT.

Conclusions

Wide-field montage OCT-A angiograms can visualize expansion of the RPC network, which is useful in obtaining information about various retinal disorders. The results obtained support the hypothesis that the RPC network could be responsible for RNFL nourishment.
Literature
2.
go back to reference Chan G, Balaratnasingam C, Xu J, Mammo Z, Han S, Mackenzie P et al (2015) In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res 100:32–39CrossRefPubMed Chan G, Balaratnasingam C, Xu J, Mammo Z, Han S, Mackenzie P et al (2015) In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res 100:32–39CrossRefPubMed
3.
go back to reference Toussaint D, Kuwabara T, Cogan DG (1961) Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch Ophthalmol 65:575–581CrossRefPubMed Toussaint D, Kuwabara T, Cogan DG (1961) Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch Ophthalmol 65:575–581CrossRefPubMed
4.
go back to reference Scoles D, Gray DC, Hunter JJ, Wolfe R, Gee BP, Geng Y et al (2009) In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol 9:9CrossRefPubMedPubMedCentral Scoles D, Gray DC, Hunter JJ, Wolfe R, Gee BP, Geng Y et al (2009) In-vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol 9:9CrossRefPubMedPubMedCentral
5.
go back to reference Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layersimaged by fluorescein angiography and optical coherencetomography angiography. JAMA Ophthalmol 133:45–50CrossRefPubMed Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layersimaged by fluorescein angiography and optical coherencetomography angiography. JAMA Ophthalmol 133:45–50CrossRefPubMed
6.
go back to reference Yu PK, Balaratnasingam C, Xu J, Morgan WH, Mammo Z, Han S et al (2015) Label-free density measurements of radial peripapillary capillaries in the human retina. PLoS ONE 10:e0135151CrossRefPubMedPubMedCentral Yu PK, Balaratnasingam C, Xu J, Morgan WH, Mammo Z, Han S et al (2015) Label-free density measurements of radial peripapillary capillaries in the human retina. PLoS ONE 10:e0135151CrossRefPubMedPubMedCentral
7.
go back to reference Yu PK, Cringle SJ, Yu DY (2014) Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res 129:83–92CrossRefPubMed Yu PK, Cringle SJ, Yu DY (2014) Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res 129:83–92CrossRefPubMed
8.
go back to reference Mase T, Ishibazawa A, Nagaoka T, Yokota H, Yoshida A (2016) Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:504–510CrossRef Mase T, Ishibazawa A, Nagaoka T, Yokota H, Yoshida A (2016) Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:504–510CrossRef
9.
go back to reference Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG, Balakrishna N (2017) Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma 26:241–246CrossRefPubMed Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG, Balakrishna N (2017) Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma 26:241–246CrossRefPubMed
10.
go back to reference Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3:1182–1199CrossRefPubMedPubMedCentral Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ et al (2012) Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express 3:1182–1199CrossRefPubMedPubMedCentral
11.
go back to reference Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al (2012) Split-spectrum amplitude decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRefPubMedPubMedCentral Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al (2012) Split-spectrum amplitude decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRefPubMedPubMedCentral
12.
go back to reference Chen J, Smith R, Tian J, Laine AF (2008) A novel registration method for retinal images based on local features. Conf Proc IEEE Eng Med Biol Soc. 2008:2242–2245PubMedPubMedCentral Chen J, Smith R, Tian J, Laine AF (2008) A novel registration method for retinal images based on local features. Conf Proc IEEE Eng Med Biol Soc. 2008:2242–2245PubMedPubMedCentral
13.
go back to reference Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, vol 1496, pp 130–137 Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, vol 1496, pp 130–137
14.
go back to reference De Carlo TE, Salz DA, Waheed NK, Baumal CR, Duker JS, Witkin AJ (2015) Visualization of the retinal vasculature using wide field montage optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 46:611–616PubMedCrossRef De Carlo TE, Salz DA, Waheed NK, Baumal CR, Duker JS, Witkin AJ (2015) Visualization of the retinal vasculature using wide field montage optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 46:611–616PubMedCrossRef
15.
Metadata
Title
Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness
Authors
Tarannum Mansoori
Jayanthi Sivaswamy
Jahnavi Sai Gamalapati
Nagalla Balakrishna
Publication date
01-06-2018
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 3/2018
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-017-0544-0

Other articles of this Issue 3/2018

International Ophthalmology 3/2018 Go to the issue