Skip to main content
Top
Published in: International Ophthalmology 3/2017

01-06-2017 | Original Paper

Reproducibility of choroidal thickness measurements in subjects on 3 spectral domain optical coherence tomography machines

Authors: Chiang Ling Koay, Matthew Justin Quo, Visvaraja Subrayan

Published in: International Ophthalmology | Issue 3/2017

Login to get access

Abstract

The purpose of this study was to investigate the reproducibility of choroidal thickness measurements in normal subjects on 3 spectral domain optical coherence tomography instruments, namely: Zeiss Cirrus HD-OCT (Carl Zeiss Meditec Inc., Dublin, CA), Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany), and Optovue RTVue (Optovue Inc., Fremont, CA). This cross-sectional non-interventional study was performed in a single institution. Images were obtained in 47 eyes of 47 healthy volunteers which age ranged between 23 and 72 without ocular pathology. All subjects were imaged on the fovea using Cirrus HD 1-line raster, Spectralis enhanced depth imaging, and RTVue retina-cross. The choroid was measured subfoveally and at intervals of 500 µm from the fovea nasally and temporally up to 2500 µm. Paired t test, modified Bland–Altman plot, and Pearson’s correlation were used to compare the results. There is no significant difference between the systems for any measurement within 2500 µm either side of the fovea for most points. Inter-observer correlation was strong for RTVue, and moderate in both Cirrus and Spectralis.
Literature
1.
go back to reference Yanoff M, Duker JS (eds) (2008) Ophthalmology, 3rd edn. Mosby, Philadelphia Yanoff M, Duker JS (eds) (2008) Ophthalmology, 3rd edn. Mosby, Philadelphia
2.
go back to reference Manjunath V, Taha M, Fujimoto JG et al (2010) Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol 150(3):325–329CrossRefPubMedPubMedCentral Manjunath V, Taha M, Fujimoto JG et al (2010) Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol 150(3):325–329CrossRefPubMedPubMedCentral
3.
go back to reference Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148(3):445–450CrossRefPubMed Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148(3):445–450CrossRefPubMed
4.
go back to reference Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147(5):811–815CrossRefPubMed Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147(5):811–815CrossRefPubMed
5.
go back to reference Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35(6):2857–2864PubMed Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35(6):2857–2864PubMed
6.
go back to reference Ho M, Liu DT, Chan VC et al (2013) Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology 120(9):1909–1914CrossRefPubMed Ho M, Liu DT, Chan VC et al (2013) Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology 120(9):1909–1914CrossRefPubMed
8.
go back to reference Ikuno Y, Kawaguchi K, Nouchi T et al (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51(4):2173–2176CrossRefPubMed Ikuno Y, Kawaguchi K, Nouchi T et al (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51(4):2173–2176CrossRefPubMed
9.
go back to reference Regatieri CV, Branchini L, Carmody J et al (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina (Philadelphia, Pa.) 32(3):563CrossRef Regatieri CV, Branchini L, Carmody J et al (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina (Philadelphia, Pa.) 32(3):563CrossRef
11.
go back to reference Chung SE, Kang SW, Lee JH et al (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845CrossRefPubMed Chung SE, Kang SW, Lee JH et al (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118(5):840–845CrossRefPubMed
12.
go back to reference Gemenetzi M, De Salvo G, Lotery A (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye 24(12):1743–1756CrossRefPubMed Gemenetzi M, De Salvo G, Lotery A (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye 24(12):1743–1756CrossRefPubMed
13.
go back to reference Imamura Y, Fujiwara T, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29(10):1469–1473CrossRefPubMed Imamura Y, Fujiwara T, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29(10):1469–1473CrossRefPubMed
14.
go back to reference Wu L, Alpizar-Alvarez N (2013) Choroidal imaging by spectral domain-optical coherence tomography. Taiwan J Ophthalmol 3(1):3–13CrossRef Wu L, Alpizar-Alvarez N (2013) Choroidal imaging by spectral domain-optical coherence tomography. Taiwan J Ophthalmol 3(1):3–13CrossRef
15.
go back to reference Maruko I, Iida T, Sugano Y et al (2011) Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina 31(3):510–517CrossRefPubMed Maruko I, Iida T, Sugano Y et al (2011) Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina 31(3):510–517CrossRefPubMed
16.
go back to reference Reibaldi M, Boscia F, Avitabile T et al (2011) Enhanced depth imaging optical coherence tomography of the choroid in idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol 151(1):112–117CrossRefPubMed Reibaldi M, Boscia F, Avitabile T et al (2011) Enhanced depth imaging optical coherence tomography of the choroid in idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol 151(1):112–117CrossRefPubMed
17.
go back to reference Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500CrossRefPubMed Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500CrossRefPubMed
18.
go back to reference Brown JS, Flitcroft DI, G-s Ying et al (2009) In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Invest Ophthalmol Vis Sci 50(1):5–12CrossRefPubMed Brown JS, Flitcroft DI, G-s Ying et al (2009) In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Invest Ophthalmol Vis Sci 50(1):5–12CrossRefPubMed
20.
go back to reference Ikuno Y, Tano Y (2009) Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(8):3876–3880CrossRefPubMed Ikuno Y, Tano Y (2009) Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(8):3876–3880CrossRefPubMed
21.
go back to reference Branchini L, Regatieri CV, Flores-Moreno I et al (2012) Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 119(1):119–123CrossRefPubMed Branchini L, Regatieri CV, Flores-Moreno I et al (2012) Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 119(1):119–123CrossRefPubMed
22.
go back to reference Yamashita T, Yamashita T, Shirasawa M et al (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci 53(3):1102–1107CrossRefPubMed Yamashita T, Yamashita T, Shirasawa M et al (2012) Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. Invest Ophthalmol Vis Sci 53(3):1102–1107CrossRefPubMed
23.
go back to reference Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58(5):387–429CrossRefPubMed Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58(5):387–429CrossRefPubMed
Metadata
Title
Reproducibility of choroidal thickness measurements in subjects on 3 spectral domain optical coherence tomography machines
Authors
Chiang Ling Koay
Matthew Justin Quo
Visvaraja Subrayan
Publication date
01-06-2017
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 3/2017
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-016-0306-4

Other articles of this Issue 3/2017

International Ophthalmology 3/2017 Go to the issue