Skip to main content
Top
Published in: Familial Cancer 1/2015

01-03-2015 | Original Article

Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

Authors: Lise B. Ahlborn, Ane Y. Steffensen, Lars Jønson, Malene Djursby, Finn C. Nielsen, Anne-Marie Gerdes, Thomas V. O. Hansen

Published in: Familial Cancer | Issue 1/2015

Login to get access

Abstract

Next-generation sequencing has entered routine genetic testing of hereditary breast cancer. It has provided the opportunity to screen multiple genes simultaneously, and consequently has identified new complex genotypes. Here we report the first identification of a woman double heterozygote for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been described before and mini-gene splicing experiments revealed that the mutation results in skipping of exon 26 containing a part of the DNA-binding domain. We conclude that the woman has two potential disease-causing mutations and that predictive testing of family members should include both the RAD51C and BRCA2 mutation. This study illustrates the advantage of sequencing gene panels using next-generation sequencing in terms of genetic testing.
Literature
3.
go back to reference Godthelp BC, Wiegant WW, van Duijn-Goedhart A et al (2002) Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 30(10):2172–2182CrossRefPubMedCentralPubMed Godthelp BC, Wiegant WW, van Duijn-Goedhart A et al (2002) Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 30(10):2172–2182CrossRefPubMedCentralPubMed
4.
go back to reference Liu Y, Tarsounas M, O’Regan P, West SC (2007) Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem 282(3):1973–1979CrossRefPubMed Liu Y, Tarsounas M, O’Regan P, West SC (2007) Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem 282(3):1973–1979CrossRefPubMed
5.
go back to reference Vaz F, Hanenberg H, Schuster B et al (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409 Vaz F, Hanenberg H, Schuster B et al (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409
6.
go back to reference Kushnir A, Laitman Y, Shimon SP, Berger R, Friedman E (2012) Germline mutations in RAD51C in Jewish high cancer risk families. Breast Cancer Res Treat 136(3): 869–874. doi:10.1007/s10549-012-2317-9 Kushnir A, Laitman Y, Shimon SP, Berger R, Friedman E (2012) Germline mutations in RAD51C in Jewish high cancer risk families. Breast Cancer Res Treat 136(3): 869–874. doi:10.​1007/​s10549-012-2317-9
7.
go back to reference Meindl A, Hellebrand H, Wiek C, et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414 Meindl A, Hellebrand H, Wiek C, et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414
8.
go back to reference Osorio A, Endt D, Fernandez F et al (2012) Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet 21(13):2889–2898 Osorio A, Endt D, Fernandez F et al (2012) Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet 21(13):2889–2898
9.
go back to reference Kee Y, D’Andrea AD (2012) Molecular pathogenesis and clinical management of Fanconi anemia. J Clin Invest 122(11):3799–3806 Kee Y, D’Andrea AD (2012) Molecular pathogenesis and clinical management of Fanconi anemia. J Clin Invest 122(11):3799–3806
11.
go back to reference Thery JC, Krieger S, Gaildrat P et al (2011) Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes. Eur J Hum Genet 19(10):1052–1058 Thery JC, Krieger S, Gaildrat P et al (2011) Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes. Eur J Hum Genet 19(10):1052–1058
12.
go back to reference Steffensen AY, Dandanell M, Jonson L et al (2014) Functional characterization of BRCA1 gene variants by mini-gene splicing assay. Eur J Hum Genet. doi:10.1038/ejhg.2014.40 Steffensen AY, Dandanell M, Jonson L et al (2014) Functional characterization of BRCA1 gene variants by mini-gene splicing assay. Eur J Hum Genet. doi:10.​1038/​ejhg.​2014.​40
13.
go back to reference Cruger DG, Kruse TA, Gerdes AM (2005) ‘Indirect’ BRCA1/2 testing: a useful approach in hereditary breast and ovarian cancer families without a living affected relative. Clin Genet 68(3):228–233CrossRefPubMed Cruger DG, Kruse TA, Gerdes AM (2005) ‘Indirect’ BRCA1/2 testing: a useful approach in hereditary breast and ovarian cancer families without a living affected relative. Clin Genet 68(3):228–233CrossRefPubMed
14.
go back to reference Vreeswijk MP, Kraan JN, van der Klift HM et al (2009) Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat 30(1):107–114. doi:10.1002/humu.20811 CrossRefPubMed Vreeswijk MP, Kraan JN, van der Klift HM et al (2009) Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat 30(1):107–114. doi:10.​1002/​humu.​20811 CrossRefPubMed
15.
go back to reference Leegte B, van der Hout AH, Deffenbaugh AM et al (2005) Phenotypic expression of double heterozygosity for BRCA1 and BRCA2 germline mutations. J Med Genet 42(3):e20CrossRefPubMedCentralPubMed Leegte B, van der Hout AH, Deffenbaugh AM et al (2005) Phenotypic expression of double heterozygosity for BRCA1 and BRCA2 germline mutations. J Med Genet 42(3):e20CrossRefPubMedCentralPubMed
16.
go back to reference Caldes T, de la Hoya M, Tosar A et al (2002) A breast cancer family from Spain with germline mutations in both the BRCA1 and BRCA2 genes. J Med Genet 39(8):e44CrossRefPubMedCentralPubMed Caldes T, de la Hoya M, Tosar A et al (2002) A breast cancer family from Spain with germline mutations in both the BRCA1 and BRCA2 genes. J Med Genet 39(8):e44CrossRefPubMedCentralPubMed
19.
go back to reference Steffensen AY, Jonson L, Ejlertsen B, Gerdes AM, Nielsen FC, Hansen TV (2010) Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations. Fam Cancer 9(3): 283–287. doi:10.1007/s10689-010-9345-6 Steffensen AY, Jonson L, Ejlertsen B, Gerdes AM, Nielsen FC, Hansen TV (2010) Identification of a Danish breast/ovarian cancer family double heterozygote for BRCA1 and BRCA2 mutations. Fam Cancer 9(3): 283–287. doi:10.​1007/​s10689-010-9345-6
20.
go back to reference Rainville IR, Rana HQ (2014) Next-generation sequencing for inherited breast cancer risk: counseling through the complexity. Curr Oncol Rep 16(3):371. doi:10.1007/s11912-013-0371-z Rainville IR, Rana HQ (2014) Next-generation sequencing for inherited breast cancer risk: counseling through the complexity. Curr Oncol Rep 16(3):371. doi:10.​1007/​s11912-013-0371-z
21.
go back to reference Park JY, Singh TR, Nassar N et al (2013) Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair. Oncogene. doi:10.1038/onc.2013.421 Park JY, Singh TR, Nassar N et al (2013) Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair. Oncogene. doi:10.​1038/​onc.​2013.​421
22.
go back to reference Alamut version 2.2 (Interactive Biosoftware, Rouen, France) Alamut version 2.2 (Interactive Biosoftware, Rouen, France)
25.
go back to reference Guidugli L, Pankratz VS, Singh N et al (2013) A classification model for BRCA2 DNA binding domain missense variants based on homology-directed repair activity. Cancer Res 73(1):265–275 Guidugli L, Pankratz VS, Singh N et al (2013) A classification model for BRCA2 DNA binding domain missense variants based on homology-directed repair activity. Cancer Res 73(1):265–275
Metadata
Title
Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations
Authors
Lise B. Ahlborn
Ane Y. Steffensen
Lars Jønson
Malene Djursby
Finn C. Nielsen
Anne-Marie Gerdes
Thomas V. O. Hansen
Publication date
01-03-2015
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 1/2015
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-014-9747-y

Other articles of this Issue 1/2015

Familial Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine