Skip to main content
Top
Published in: Familial Cancer 2/2012

01-06-2012 | Original Article

Analysis of the miR-34a locus in 62 patients with familial cutaneous melanoma negative for CDKN2A/CDK4 screening

Authors: Angela M. Cozzolino, Lucia Pedace, Marco Castori, Paola De Simone, Nicoletta Preziosi, Isabella Sperduti, Chiara Panetta, Valerio Mogini, Carmelilia De Bernardo, Aldo Morrone, Caterina Catricalà, Paola Grammatico

Published in: Familial Cancer | Issue 2/2012

Login to get access

Abstract

MicroRNAs are small non-coding RNAs, which inhibit expression of specific target genes at the post-transcriptional level and are often misregulated in human cancer. Among them, miR-34a is considered a tumor suppressor with a hypothetical role in melanoma tumorigenesis. In this work, 62 Italian index patients with familial melanoma and negative for CDKN2A/CDK4 screening were investigated for miR-34a germline mutations. Eight novel miR-34a sequence variants were identified at both the heterozygous (c.+259G>A, c.+424G>A, c.+1465C>T, c.+1769C>T, c.+2456T>G, c.+2603C>T, c.+2972T>A, c.+3069T>C) and homozygous (c.+424G>A, c.+1465C>T, c.+1769C>T) states. Molecular screening identified all nucleotide changes in a healthy population of 150 controls and demonstrated that they are common polymorphisms. However, statistically significant differences of allele and genotype frequencies were detected for c.+1465C>T and c.+1769C>T, and borderline values for c.+2456T>G. By stratifying patients by relevant clinical features (presence/absence of multiple primary melanoma, Breslow’s thickness, phototype and number of nevi), no significant findings were noted except for an association between the c.+424G>A (heterozygous individual GA) and multiple primary melanoma and phototype III–IV. Our preliminary study suggests that miR-34a, although having a role in late tumorigenesis, does not contribute to the inherited susceptibility to cutaneous melanoma. A function as phenotypic modulator in familial melanoma cannot be excluded.
Literature
1.
go back to reference Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRef Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRef
3.
go back to reference Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(suppl):R40–R44PubMed Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(suppl):R40–R44PubMed
4.
5.
go back to reference Caramuta S, Egyházi S, Rodolfo M, Witten D, Hansson J, Larsson C et al (2010) MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 130:2062–2070PubMedCrossRef Caramuta S, Egyházi S, Rodolfo M, Witten D, Hansson J, Larsson C et al (2010) MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 130:2062–2070PubMedCrossRef
7.
go back to reference Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12:97–99PubMedCrossRef Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12:97–99PubMedCrossRef
8.
go back to reference Poetsch M, Dittberner T, Woenckhaus C (2003) Microsatellite analysis at 1p36.3 in malignant melanoma of the skin: fine mapping in search of a possible tumour suppressor gene region. Melanoma Res 13:29–33PubMedCrossRef Poetsch M, Dittberner T, Woenckhaus C (2003) Microsatellite analysis at 1p36.3 in malignant melanoma of the skin: fine mapping in search of a possible tumour suppressor gene region. Melanoma Res 13:29–33PubMedCrossRef
9.
go back to reference Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS 582:1564–1568CrossRef Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R et al (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS 582:1564–1568CrossRef
10.
go back to reference Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307PubMedCrossRef Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307PubMedCrossRef
11.
go back to reference Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P et al (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213PubMedCrossRef Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P et al (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213PubMedCrossRef
12.
go back to reference He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedCrossRef He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedCrossRef
13.
go back to reference Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J et al (2009) MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-met. J Invest Ophthalmol Vis Sci 50:1559–1565CrossRef Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J et al (2009) MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-met. J Invest Ophthalmol Vis Sci 50:1559–1565CrossRef
14.
go back to reference Molnár V, Tamási V, Bakos B, Wiener Z, Falus A (2008) Changes in miRNA expression in solid tumors: a miRNA profiling in melanomas. Semin Cancer Biol 18:111–122PubMedCrossRef Molnár V, Tamási V, Bakos B, Wiener Z, Falus A (2008) Changes in miRNA expression in solid tumors: a miRNA profiling in melanomas. Semin Cancer Biol 18:111–122PubMedCrossRef
15.
go back to reference Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600PubMedCrossRef Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600PubMedCrossRef
16.
go back to reference Majore S, De Simone P, Crisi A, Eibenschutz L, Binni F, Antigoni I et al (2008) CDKN2A/CDK4 molecular study on 155 Italian subjects with familial and/or primary multiple melanoma. Pigment Cell Melanoma Res 21:209–211PubMedCrossRef Majore S, De Simone P, Crisi A, Eibenschutz L, Binni F, Antigoni I et al (2008) CDKN2A/CDK4 molecular study on 155 Italian subjects with familial and/or primary multiple melanoma. Pigment Cell Melanoma Res 21:209–211PubMedCrossRef
17.
go back to reference Binni F, Antigoni I, De Simone P, Majore S, Silipo V, Crisi A et al (2010) Novel and recurrent p14 mutations in Italian familial melanoma. Clin Genet 77:581–586PubMedCrossRef Binni F, Antigoni I, De Simone P, Majore S, Silipo V, Crisi A et al (2010) Novel and recurrent p14 mutations in Italian familial melanoma. Clin Genet 77:581–586PubMedCrossRef
18.
go back to reference Wu M, Jolicoeur N, Li Z, Zhang L, Fortin Y, L’Abbe D et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716PubMedCrossRef Wu M, Jolicoeur N, Li Z, Zhang L, Fortin Y, L’Abbe D et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716PubMedCrossRef
19.
20.
go back to reference Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21PubMedCrossRef Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21PubMedCrossRef
21.
go back to reference Li W, Duan R, Kooy F, Sherman SL, Zhou W, Jin P (2009) Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet 46:358–360PubMedCrossRef Li W, Duan R, Kooy F, Sherman SL, Zhou W, Jin P (2009) Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet 46:358–360PubMedCrossRef
22.
go back to reference Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2353:1793–1801CrossRef Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2353:1793–1801CrossRef
23.
go back to reference Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1:460–469CrossRef Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 1:460–469CrossRef
24.
go back to reference Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G et al (2009) A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 18:1183–1187PubMedCrossRef Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G et al (2009) A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 18:1183–1187PubMedCrossRef
25.
go back to reference Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q (2010) Association of microRNA-196a–2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci 55:2288–2293PubMedCrossRef Peng S, Kuang Z, Sheng C, Zhang Y, Xu H, Cheng Q (2010) Association of microRNA-196a–2 gene polymorphism with gastric cancer risk in a Chinese population. Dig Dis Sci 55:2288–2293PubMedCrossRef
26.
go back to reference Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY et al (2008) A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29:2126–2131PubMedCrossRef Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY et al (2008) A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29:2126–2131PubMedCrossRef
27.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752PubMedCrossRef Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752PubMedCrossRef
28.
go back to reference Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438PubMedCrossRef Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438PubMedCrossRef
29.
go back to reference Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022PubMedCrossRef Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022PubMedCrossRef
30.
go back to reference Feinberg-Gorenshtein G, Avigad S, Jeison M, Halevy-Berco G, Mardoukh J, Luria D et al (2009) Reduced levels of miR-34a in neuroblastoma are not caused by mutations in the TP53 binding site. Genes Chromosomes Cancer 48:539–543PubMedCrossRef Feinberg-Gorenshtein G, Avigad S, Jeison M, Halevy-Berco G, Mardoukh J, Luria D et al (2009) Reduced levels of miR-34a in neuroblastoma are not caused by mutations in the TP53 binding site. Genes Chromosomes Cancer 48:539–543PubMedCrossRef
31.
go back to reference Zenz T, Mohr J, Eldering E, Kater AP, Bühler A, Kienle D et al (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808PubMedCrossRef Zenz T, Mohr J, Eldering E, Kater AP, Bühler A, Kienle D et al (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808PubMedCrossRef
32.
go back to reference Sabbaghian N, Kyle R, Hao A, Hogg D, Tischkowitz M (2010) Mutation analysis of the PALB2 cancer predisposition gene in familial melanoma. Fam Cancer [Epub ahead of print] Sabbaghian N, Kyle R, Hao A, Hogg D, Tischkowitz M (2010) Mutation analysis of the PALB2 cancer predisposition gene in familial melanoma. Fam Cancer [Epub ahead of print]
33.
go back to reference Pedace L, Castiglia D, De Simone P, Castori M, De Luca N, Amantea A et al (2011) AXIN2 germline mutations are rare in familial melanoma. Genes Chromosom Cancer 50:370–373PubMedCrossRef Pedace L, Castiglia D, De Simone P, Castori M, De Luca N, Amantea A et al (2011) AXIN2 germline mutations are rare in familial melanoma. Genes Chromosom Cancer 50:370–373PubMedCrossRef
34.
go back to reference Lang J, Tobias ES, Mackie R (2011) Preliminary evidence for involvement of the tumour suppressor gene CHD5 in a family with cutaneous melanoma. Br J Dermatol 164:1010–1016PubMedCrossRef Lang J, Tobias ES, Mackie R (2011) Preliminary evidence for involvement of the tumour suppressor gene CHD5 in a family with cutaneous melanoma. Br J Dermatol 164:1010–1016PubMedCrossRef
35.
go back to reference Duan S, Mi S, Zhang W, Dolan ME (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425PubMedCrossRef Duan S, Mi S, Zhang W, Dolan ME (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425PubMedCrossRef
36.
go back to reference Quach H, Barreiro LB, Laval G, Zidane N, Patin E, Kidd KK et al (2009) Signatures of purifying and local positive selection in human miRNAs. Am J Hum Genet 84:316–327PubMedCrossRef Quach H, Barreiro LB, Laval G, Zidane N, Patin E, Kidd KK et al (2009) Signatures of purifying and local positive selection in human miRNAs. Am J Hum Genet 84:316–327PubMedCrossRef
Metadata
Title
Analysis of the miR-34a locus in 62 patients with familial cutaneous melanoma negative for CDKN2A/CDK4 screening
Authors
Angela M. Cozzolino
Lucia Pedace
Marco Castori
Paola De Simone
Nicoletta Preziosi
Isabella Sperduti
Chiara Panetta
Valerio Mogini
Carmelilia De Bernardo
Aldo Morrone
Caterina Catricalà
Paola Grammatico
Publication date
01-06-2012
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 2/2012
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-011-9502-6

Other articles of this Issue 2/2012

Familial Cancer 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine