Skip to main content
Top
Published in: Familial Cancer 4/2011

01-12-2011

Familial colorectal cancer type X syndrome: two distinct molecular entities?

Authors: Inês Francisco, Cristina Albuquerque, Pedro Lage, Hélio Belo, Inês Vitoriano, Bruno Filipe, Isabel Claro, Sara Ferreira, Paula Rodrigues, Paula Chaves, Carlos Nobre Leitão, António Dias Pereira

Published in: Familial Cancer | Issue 4/2011

Login to get access

Abstract

In a fraction of families fulfilling the Amsterdam criteria for hereditary non-polyposis colorectal cancer, colorectal cancers are microsatellite stable and DNA mismatch repair gene (MMR) mutations are not found. These families were designated as familial colorectal cancer type X (FCCTX). We aimed to characterise a group of FCCTX families defined by the Amsterdam criteria and MSS tumours at clinical and molecular level. Twenty-four tumours from 15 FCCTX families were analysed for loss of known tumour suppressor gene (TSG) loci (APC, TP53, SMAD4 and DCC), MGMT and MMR genes promoter methylation, and also APC and KRAS somatic mutations. FCCTX families presented specific clinical features: absence of endometrial tumours, high adenoma/carcinoma ratio (1.91) and prevalence of rectal cancers (13/27, 48%). New molecular features were found: the majority of FCCTX tumours (13/18; 72%) presented TSG loss. TSG loss positive tumours presented frequent APC and KRAS somatic mutations and MGMT methylation [10/13 (77%), 7/13 (54%) and 6/11 (54%), respectively]. In TSG loss negative tumours (5/18; 28%), the same molecular events were found in 2/5 (40%), 2/5 (40%) and 1/3 (33%) tumours, respectively. Transition mutations in KRAS were more frequent among MGMT methylated tumours than in unmethylated [5/8 (63%) vs. 1/10 (10%), P = 0.03]. Although sharing similar clinical features, at least two different molecular entities should exist among FCCTX families, one whose tumours present frequent TSG loss, APC and KRAS somatic mutations, and MGMT promoter methylation, and a second, lesser predominant, with no evidence of TSG loss and rarely presenting promoter methylation.
Literature
1.
go back to reference Vasen H, Watson P, Mecklin J et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456PubMedCrossRef Vasen H, Watson P, Mecklin J et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456PubMedCrossRef
2.
go back to reference Jass JR (2006) Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol 12(31):4943–4950PubMed Jass JR (2006) Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol 12(31):4943–4950PubMed
3.
4.
go back to reference Lindor NM, Rabe K, Petersen GM et al (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 293(16):1979–1985PubMedCrossRef Lindor NM, Rabe K, Petersen GM et al (2005) Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 293(16):1979–1985PubMedCrossRef
5.
go back to reference Boland CR (2005) Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam Cancer 4(3):211–218PubMedCrossRef Boland CR (2005) Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam Cancer 4(3):211–218PubMedCrossRef
6.
go back to reference Mueller-Koch Y, Vogelsang H, Kopp R et al (2005) Hereditary non-polyposis colorectal cancer: clinical and molecular evidence for a new entity of hereditary colorectal cancer. Gut 54(12):1733–1740PubMedCrossRef Mueller-Koch Y, Vogelsang H, Kopp R et al (2005) Hereditary non-polyposis colorectal cancer: clinical and molecular evidence for a new entity of hereditary colorectal cancer. Gut 54(12):1733–1740PubMedCrossRef
7.
go back to reference Dove-Edwin I, de Jong AE, Adams J et al (2006) Prospective results of surveillance colonoscopy in dominant familial colorectal cancer with and without lynch syndrome. Gastroenterology 130(7):1995–2000PubMedCrossRef Dove-Edwin I, de Jong AE, Adams J et al (2006) Prospective results of surveillance colonoscopy in dominant familial colorectal cancer with and without lynch syndrome. Gastroenterology 130(7):1995–2000PubMedCrossRef
8.
go back to reference Vasen HFA, Abdirahman M, Brohet R et al (2010) One to 2-year surveillance intervals reduce risk of colorectal cancer in families with lynch syndrome. Gastroenterology 138(7):2300–2306PubMedCrossRef Vasen HFA, Abdirahman M, Brohet R et al (2010) One to 2-year surveillance intervals reduce risk of colorectal cancer in families with lynch syndrome. Gastroenterology 138(7):2300–2306PubMedCrossRef
9.
go back to reference Ferreira S, Lage P, Sousa R et al (2009) Familial colorectal cancer type X: clinical, pathological and molecular characterization. Acta Med Port 22(3):207–214PubMed Ferreira S, Lage P, Sousa R et al (2009) Familial colorectal cancer type X: clinical, pathological and molecular characterization. Acta Med Port 22(3):207–214PubMed
10.
go back to reference Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215 Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215
11.
go back to reference Groden J, Thliveris A, Samowitz W et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600PubMedCrossRef Groden J, Thliveris A, Samowitz W et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600PubMedCrossRef
12.
go back to reference Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954PubMedCrossRef Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954PubMedCrossRef
13.
go back to reference Gylling A, Ridanpää M, Vierimaa O et al (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124(10):2333–2340PubMedCrossRef Gylling A, Ridanpää M, Vierimaa O et al (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124(10):2333–2340PubMedCrossRef
14.
go back to reference Goel A, Arnold CN, Niedzwiecki D et al (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63(7):1608–1614PubMed Goel A, Arnold CN, Niedzwiecki D et al (2003) Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63(7):1608–1614PubMed
15.
16.
go back to reference Imai Y, Oda H, Tsurutani N et al (1997) Frequent somatic mutations of the APC and p53 genes in sporadic ampullary carcinomas. Cancer Sci 88(9):846–854CrossRef Imai Y, Oda H, Tsurutani N et al (1997) Frequent somatic mutations of the APC and p53 genes in sporadic ampullary carcinomas. Cancer Sci 88(9):846–854CrossRef
17.
go back to reference Scott RJ, McPhillips M, Meldrum CJ et al (2001) Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 68(1):118–127PubMedCrossRef Scott RJ, McPhillips M, Meldrum CJ et al (2001) Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 68(1):118–127PubMedCrossRef
18.
go back to reference Llor X, Pons E, Xicola RM et al (2005) Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 11(20):7304–7310PubMedCrossRef Llor X, Pons E, Xicola RM et al (2005) Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 11(20):7304–7310PubMedCrossRef
19.
go back to reference Lindor N (2009) Hereditary colorectal cancer: MYH-associated polyposis and other newly identified disorders. Best Pract Res Clin Gastroenterol 23(1):75–87PubMedCrossRef Lindor N (2009) Hereditary colorectal cancer: MYH-associated polyposis and other newly identified disorders. Best Pract Res Clin Gastroenterol 23(1):75–87PubMedCrossRef
20.
go back to reference Lindor NM (2009) Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome. Surg Oncol Clin N Am 18(4):637–645PubMedCrossRef Lindor NM (2009) Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome. Surg Oncol Clin N Am 18(4):637–645PubMedCrossRef
21.
go back to reference Jass JR, Cottier DS, Jeevaratnam P et al (1995) Diagnostic use of microsatellite instability in hereditary non-polyposis colorectal cancer. Lancet 346(8984):1200–1201PubMedCrossRef Jass JR, Cottier DS, Jeevaratnam P et al (1995) Diagnostic use of microsatellite instability in hereditary non-polyposis colorectal cancer. Lancet 346(8984):1200–1201PubMedCrossRef
22.
go back to reference Valle L, Perea J, Carbonell P et al (2007) Clinicopathologic and pedigree differences in Amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol 25(7):781–786PubMedCrossRef Valle L, Perea J, Carbonell P et al (2007) Clinicopathologic and pedigree differences in Amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol 25(7):781–786PubMedCrossRef
23.
go back to reference Abdel-Rahman WM, Ollikainen M, Kariola R et al (2005) Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene 24(9):1542–1551PubMedCrossRef Abdel-Rahman WM, Ollikainen M, Kariola R et al (2005) Comprehensive characterization of HNPCC-related colorectal cancers reveals striking molecular features in families with no germline mismatch repair gene mutations. Oncogene 24(9):1542–1551PubMedCrossRef
24.
go back to reference Sanchez-de-Abajo A, de la Hoya M, van Puijenbroek M et al (2007) Molecular analysis of colorectal cancer tumors from patients with mismatch repair proficient hereditary nonpolyposis colorectal cancer suggests novel carcinogenic pathways. Clin Cancer Res 13(19):5729–5735PubMedCrossRef Sanchez-de-Abajo A, de la Hoya M, van Puijenbroek M et al (2007) Molecular analysis of colorectal cancer tumors from patients with mismatch repair proficient hereditary nonpolyposis colorectal cancer suggests novel carcinogenic pathways. Clin Cancer Res 13(19):5729–5735PubMedCrossRef
25.
go back to reference Albuquerque C, Baltazar C, Filipe B et al (2010) Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosom Cancer 49(8):746–759 Albuquerque C, Baltazar C, Filipe B et al (2010) Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosom Cancer 49(8):746–759
26.
go back to reference Nagasaka T, Goel A, Notohara K et al (2008) Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis. Int J Cancer 122(11):2429–2436PubMedCrossRef Nagasaka T, Goel A, Notohara K et al (2008) Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis. Int J Cancer 122(11):2429–2436PubMedCrossRef
27.
go back to reference Goel A, Xicola RM, Nguyen T-P et al (2010) Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology 138(5):1854–1862PubMedCrossRef Goel A, Xicola RM, Nguyen T-P et al (2010) Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology 138(5):1854–1862PubMedCrossRef
28.
go back to reference Cetta F, Montalto G, Gori M et al (2000) Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a european cooperative study. J Clin Endocrinol Metab 85(1):286–292PubMedCrossRef Cetta F, Montalto G, Gori M et al (2000) Germline mutations of the APC gene in patients with familial adenomatous polyposis-associated thyroid carcinoma: results from a european cooperative study. J Clin Endocrinol Metab 85(1):286–292PubMedCrossRef
29.
go back to reference Hahnloser D, Petersen GM, Rabe K et al (2003) The APC E1317Q variant in adenomatous polyps and colorectal cancers. Cancer Epidemiol Biomarkers Prev 12(10):1023–1028PubMed Hahnloser D, Petersen GM, Rabe K et al (2003) The APC E1317Q variant in adenomatous polyps and colorectal cancers. Cancer Epidemiol Biomarkers Prev 12(10):1023–1028PubMed
30.
go back to reference Popat S, Stone J, Coleman G et al (2000) Prevalence of the APC E1317Q variant in colorectal cancer patients. Cancer Lett 149(1–2):203–206PubMedCrossRef Popat S, Stone J, Coleman G et al (2000) Prevalence of the APC E1317Q variant in colorectal cancer patients. Cancer Lett 149(1–2):203–206PubMedCrossRef
31.
go back to reference Frayling IM, Beck NE, Ilyas M et al (1998) The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. Proc Natl Acad Sci USA 95(18):10722–10727PubMedCrossRef Frayling IM, Beck NE, Ilyas M et al (1998) The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. Proc Natl Acad Sci USA 95(18):10722–10727PubMedCrossRef
32.
33.
go back to reference Lamlum H, Al Tassan N, Jaeger E et al (2000) Germline APC variants in patients with multiple colorectal adenomas, with evidence for the particular importance of E1317Q. Hum Mol Genet 9(15):2215–2221PubMed Lamlum H, Al Tassan N, Jaeger E et al (2000) Germline APC variants in patients with multiple colorectal adenomas, with evidence for the particular importance of E1317Q. Hum Mol Genet 9(15):2215–2221PubMed
34.
go back to reference Scott RJ, Crooks R, Rose L et al (2004) Germline missense changes in the APC gene and their relationship to disease. Hered Cancer Clin Pract 2(2):81–91PubMedCrossRef Scott RJ, Crooks R, Rose L et al (2004) Germline missense changes in the APC gene and their relationship to disease. Hered Cancer Clin Pract 2(2):81–91PubMedCrossRef
35.
go back to reference Dallosso AR, Jones S, Azzopardi D et al (2009) The APC variant p.Glu1317Gln predisposes to colorectal adenomas by a novel mechanism of relaxing the target for tumorigenic somatic APC mutations. Hum Mutat 30(10):1412–1418 Dallosso AR, Jones S, Azzopardi D et al (2009) The APC variant p.Glu1317Gln predisposes to colorectal adenomas by a novel mechanism of relaxing the target for tumorigenic somatic APC mutations. Hum Mutat 30(10):1412–1418
Metadata
Title
Familial colorectal cancer type X syndrome: two distinct molecular entities?
Authors
Inês Francisco
Cristina Albuquerque
Pedro Lage
Hélio Belo
Inês Vitoriano
Bruno Filipe
Isabel Claro
Sara Ferreira
Paula Rodrigues
Paula Chaves
Carlos Nobre Leitão
António Dias Pereira
Publication date
01-12-2011
Publisher
Springer Netherlands
Published in
Familial Cancer / Issue 4/2011
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-011-9473-7

Other articles of this Issue 4/2011

Familial Cancer 4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine