Skip to main content
Top
Published in: European Journal of Epidemiology 10/2022

Open Access 24-09-2022 | COVID-19 | REVIEW

The methodologies to assess the effectiveness of non-pharmaceutical interventions during COVID-19: a systematic review

Authors: Nicolas Banholzer, Adrian Lison, Dennis Özcelik, Tanja Stadler, Stefan Feuerriegel, Werner Vach

Published in: European Journal of Epidemiology | Issue 10/2022

Login to get access

Abstract

Non-pharmaceutical interventions, such as school closures and stay-at-home orders, have been implemented around the world to control the spread of SARS-CoV-2. Their effectiveness in improving health-related outcomes has been the subject of numerous empirical studies. However, these studies show fairly large variation among methodologies in use, reflecting the absence of an established methodological framework. On the one hand, variation in methodologies may be desirable to assess the robustness of results; on the other hand, a lack of common standards can impede comparability among studies. To establish a comprehensive overview over the methodologies in use, we conducted a systematic review of studies assessing the effectiveness of non-pharmaceutical interventions between January 1, 2020 and January 12, 2021 (n = 248). We identified substantial variation in methodologies with respect to study setting, outcome, intervention, methodological approach, and effectiveness assessment. On this basis, we point to shortcomings of existing studies and make recommendations for the design of future studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 government response tracker). Nat Hum Behav. 2021;5(4):529–38.PubMedCrossRef Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 government response tracker). Nat Hum Behav. 2021;5(4):529–38.PubMedCrossRef
2.
go back to reference Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371(6531):eabd9338.PubMedCrossRef Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al. Inferring the effectiveness of government interventions against COVID-19. Science. 2021;371(6531):eabd9338.PubMedCrossRef
3.
go back to reference Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav. 2020;4(12):1303–12.PubMedCrossRef Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav. 2020;4(12):1303–12.PubMedCrossRef
4.
go back to reference Banholzer N, van Weenen E, Lison A, Cenedese A, Seeliger A, Kratzwald B, et al. Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19 during the first epidemic wave. PLoS ONE. 2021;16(6): e0252827.PubMedPubMedCentralCrossRef Banholzer N, van Weenen E, Lison A, Cenedese A, Seeliger A, Kratzwald B, et al. Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19 during the first epidemic wave. PLoS ONE. 2021;16(6): e0252827.PubMedPubMedCentralCrossRef
5.
go back to reference Auger KA, Shah SS, Richardson T, Hartley D, Hall M, Warniment A, et al. Association between statewide school closure and COVID-19 incidence and mortality in the US. JAMA. 2020;324(9):859–70.PubMedCrossRef Auger KA, Shah SS, Richardson T, Hartley D, Hall M, Warniment A, et al. Association between statewide school closure and COVID-19 incidence and mortality in the US. JAMA. 2020;324(9):859–70.PubMedCrossRef
6.
go back to reference Bennett M. All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in Chile. World Dev. 2021;137: 105208.PubMedCrossRef Bennett M. All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in Chile. World Dev. 2021;137: 105208.PubMedCrossRef
7.
go back to reference Courtemanche C, Garuccio J, Le A, Pinkston J, Yelowitz A. Strong social distancing measures in the United States reduced the COVID-19 growth rate. Health Aff. 2020;39(7):1237–46.CrossRef Courtemanche C, Garuccio J, Le A, Pinkston J, Yelowitz A. Strong social distancing measures in the United States reduced the COVID-19 growth rate. Health Aff. 2020;39(7):1237–46.CrossRef
8.
go back to reference Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;584(7820):257–61.PubMedCrossRef Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;584(7820):257–61.PubMedCrossRef
9.
go back to reference Hsiang S, Allen D, Annan-Phan S, Bell K, Bolliger I, Chong T, et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature. 2020;584(7820):262–7.PubMedCrossRef Hsiang S, Allen D, Annan-Phan S, Bell K, Bolliger I, Chong T, et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature. 2020;584(7820):262–7.PubMedCrossRef
10.
go back to reference Lemaitre JC, Perez-Saez J, Azman AS, Rinaldo A, Fellay J. Assessing the impact of non-pharmaceutical interventions on SARS-CoV-2 transmission in Switzerland. Swiss Med Wkly. 2020;150: w20295.PubMed Lemaitre JC, Perez-Saez J, Azman AS, Rinaldo A, Fellay J. Assessing the impact of non-pharmaceutical interventions on SARS-CoV-2 transmission in Switzerland. Swiss Med Wkly. 2020;150: w20295.PubMed
11.
go back to reference Mendez-Brito A, Bcheraoui CE, Pozo-Martin F. Systematic review of empirical studies comparing the effectiveness of non-pharmaceutical interventions against COVID-19. J Infect. 2021;83(3):281–93.PubMedPubMedCentralCrossRef Mendez-Brito A, Bcheraoui CE, Pozo-Martin F. Systematic review of empirical studies comparing the effectiveness of non-pharmaceutical interventions against COVID-19. J Infect. 2021;83(3):281–93.PubMedPubMedCentralCrossRef
12.
go back to reference Poeschl J, Larsen RB. How do non-pharmaceutical interventions affect the spread of COVID-19? A literature review. Danmarks Nationalbank (Working Paper); 2021. 4. Poeschl J, Larsen RB. How do non-pharmaceutical interventions affect the spread of COVID-19? A literature review. Danmarks Nationalbank (Working Paper); 2021. 4.
13.
go back to reference Rizvi RF, Craig KJT, Hekmat R, Reyes F, South B, Rosario B, et al. Effectiveness of non-pharmaceutical interventions related to social distancing on respiratory viral infectious disease outcomes: a rapid evidence-based review and meta-analysis. SAGE Open Med. 2021;9. Rizvi RF, Craig KJT, Hekmat R, Reyes F, South B, Rosario B, et al. Effectiveness of non-pharmaceutical interventions related to social distancing on respiratory viral infectious disease outcomes: a rapid evidence-based review and meta-analysis. SAGE Open Med. 2021;9.
14.
go back to reference Iezadi S, Gholipour K, Azami-Aghdash S, Ghiasi A, Rezapour A, Pourasghari H, et al. Effectiveness of non-pharmaceutical public health interventions against COVID-19: a systematic review and meta-analysis. PLoS ONE. 2021;16(11): e0260371.PubMedPubMedCentralCrossRef Iezadi S, Gholipour K, Azami-Aghdash S, Ghiasi A, Rezapour A, Pourasghari H, et al. Effectiveness of non-pharmaceutical public health interventions against COVID-19: a systematic review and meta-analysis. PLoS ONE. 2021;16(11): e0260371.PubMedPubMedCentralCrossRef
15.
go back to reference Talic S, Shah S, Wild H, Gasevic D, Maharaj A, Ademi Z, et al. Effectiveness of public health measures in reducing the incidence of COVID-19, SARS-CoV-2 transmission, and Covid-19 mortality: systematic review and meta-analysis. BMJ. 2021;375: e068302.PubMedCrossRef Talic S, Shah S, Wild H, Gasevic D, Maharaj A, Ademi Z, et al. Effectiveness of public health measures in reducing the incidence of COVID-19, SARS-CoV-2 transmission, and Covid-19 mortality: systematic review and meta-analysis. BMJ. 2021;375: e068302.PubMedCrossRef
17.
go back to reference Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane handbook for systematic reviews of interventions. Cochrane; 2021. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane handbook for systematic reviews of interventions. Cochrane; 2021.
18.
go back to reference Banholzer N, Lison A, Özcelik D, Feuerriegel S, Vach W. A comparison of studies estimating the effectiveness of non-pharmaceutical interventions: a systematic review protocol. PROSPERO; 2021. Banholzer N, Lison A, Özcelik D, Feuerriegel S, Vach W. A comparison of studies estimating the effectiveness of non-pharmaceutical interventions: a systematic review protocol. PROSPERO; 2021.
19.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.PubMedPubMedCentralCrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.PubMedPubMedCentralCrossRef
20.
go back to reference Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology. 2007;18(6):805–35.PubMedCrossRef Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Epidemiology. 2007;18(6):805–35.PubMedCrossRef
21.
go back to reference Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015;12(10): e1001885.PubMedPubMedCentralCrossRef Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, et al. The REporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med. 2015;12(10): e1001885.PubMedPubMedCentralCrossRef
22.
go back to reference Campbell M, Katikireddi SV, Hoffmann T, Armstrong R, Waters E, Craig P. TIDieR-PHP: a reporting guideline for population health and policy interventions. BMJ. 2018;361: k1079.PubMedPubMedCentralCrossRef Campbell M, Katikireddi SV, Hoffmann T, Armstrong R, Waters E, Craig P. TIDieR-PHP: a reporting guideline for population health and policy interventions. BMJ. 2018;361: k1079.PubMedPubMedCentralCrossRef
23.
go back to reference Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR, Dellicour S, et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020;369(6508):1255–60.PubMedCrossRef Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR, Dellicour S, et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020;369(6508):1255–60.PubMedCrossRef
24.
go back to reference Moreno GK, Braun KM, Riemersma KK, Martin MA, Halfmann PJ, Crooks CM, et al. Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nat Commun. 2020;11:5558.PubMedPubMedCentralCrossRef Moreno GK, Braun KM, Riemersma KK, Martin MA, Halfmann PJ, Crooks CM, et al. Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nat Commun. 2020;11:5558.PubMedPubMedCentralCrossRef
25.
go back to reference Wieland T. A phenomenological approach to assessing the effectiveness of COVID-19 related nonpharmaceutical interventions in Germany. Saf Sci. 2020;131: 104924.PubMedPubMedCentralCrossRef Wieland T. A phenomenological approach to assessing the effectiveness of COVID-19 related nonpharmaceutical interventions in Germany. Saf Sci. 2020;131: 104924.PubMedPubMedCentralCrossRef
26.
go back to reference Karnakov P, Arampatzis G, Kii I, Wermelinger F, Wlchli D, Papadimitriou C, et al. Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European Countries. Swiss Med Wkly. 2020;150: w20313.PubMed Karnakov P, Arampatzis G, Kii I, Wermelinger F, Wlchli D, Papadimitriou C, et al. Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European Countries. Swiss Med Wkly. 2020;150: w20313.PubMed
27.
go back to reference Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–12.PubMedCrossRef Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–12.PubMedCrossRef
28.
go back to reference Cori A. EpiEstim: estimate time varying reproduction numbers from epidemic curves; 2021. Cori A. EpiEstim: estimate time varying reproduction numbers from epidemic curves; 2021.
29.
go back to reference Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82.PubMedCrossRef Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82.PubMedCrossRef
30.
go back to reference Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–16.PubMedCrossRef Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–16.PubMedCrossRef
31.
go back to reference Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.PubMedPubMedCentralCrossRef Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438(7066):355–9.PubMedPubMedCentralCrossRef
32.
go back to reference European Centre for Disease Prevention and Control. COVID-19 Datasets; 2022. https://www.ecdc.europa.eu/en/covid-19/data. European Centre for Disease Prevention and Control. COVID-19 Datasets; 2022. https://​www.​ecdc.​europa.​eu/​en/​covid-19/​data.​
33.
go back to reference Johns Hopkins University & Medicine. Coronavirus Resource Center; 2022. https://coronavirus.jhu.edu/. Johns Hopkins University & Medicine. Coronavirus Resource Center; 2022. https://​coronavirus.​jhu.​edu/​.​
34.
go back to reference Worldometer. Coronavirus Statistics; 2022. https://www.worldometers.info/coronavirus/. Worldometer. Coronavirus Statistics; 2022. https://​www.​worldometers.​info/​coronavirus/​.​
35.
go back to reference Google. COVID-19 Community Mobility Reports; 2022. https://www.google.com/covid19/mobility/. Google. COVID-19 Community Mobility Reports; 2022. https://​www.​google.​com/​covid19/​mobility/​.​
36.
go back to reference Apple. COVID-19 Mobility Trends Reports; 2022. https://covid19.apple.com/mobility. Apple. COVID-19 Mobility Trends Reports; 2022. https://​covid19.​apple.​com/​mobility.​
37.
go back to reference China Data Lab. Baidu Mobility Data; 2021. https://doi.org/10.7910/DVN/FAEZIO. China Data Lab. Baidu Mobility Data; 2021. https://​doi.​org/​10.​7910/​DVN/​FAEZIO.​
38.
go back to reference Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553–8.PubMedPubMedCentralCrossRef Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553–8.PubMedPubMedCentralCrossRef
39.
go back to reference Couzin-Frankel J, Vogel G. School openings across globe suggest ways to keep coronavirus at bay, despite outbreaks. Science; 2021. Couzin-Frankel J, Vogel G. School openings across globe suggest ways to keep coronavirus at bay, despite outbreaks. Science; 2021.
40.
go back to reference Berry CR, Fowler A, Glazer T, Handel-Meyer S, MacMillen A. Evaluating the effects of shelter-in-place policies during the COVID-19 pandemic. Proc Natl Acad Sci. 2021;118(15): e2019706118.PubMedPubMedCentralCrossRef Berry CR, Fowler A, Glazer T, Handel-Meyer S, MacMillen A. Evaluating the effects of shelter-in-place policies during the COVID-19 pandemic. Proc Natl Acad Sci. 2021;118(15): e2019706118.PubMedPubMedCentralCrossRef
41.
go back to reference Bönisch S, Wegscheider K, Krause L, Sehner S, Wiegel S, Zapf A, et al. Effects of coronavirus disease (COVID-19) related contact restrictions in Germany, March to May 2020, on the mobility and relation to infection patterns. Front Public Health. 2020;8: 568287.PubMedPubMedCentralCrossRef Bönisch S, Wegscheider K, Krause L, Sehner S, Wiegel S, Zapf A, et al. Effects of coronavirus disease (COVID-19) related contact restrictions in Germany, March to May 2020, on the mobility and relation to infection patterns. Front Public Health. 2020;8: 568287.PubMedPubMedCentralCrossRef
42.
go back to reference Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368(6490):493–7.PubMedCrossRef Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368(6490):493–7.PubMedCrossRef
43.
go back to reference Salvatore M, Basu D, Ray D, Kleinsasser M, Purkayastha S, Bhattacharyya R, et al. Comprehensive public health evaluation of lockdown as a non-pharmaceutical intervention on COVID-19 spread in India: national trends masking state-level variations. BMJ Open. 2020;10(12): e041778.PubMedPubMedCentralCrossRef Salvatore M, Basu D, Ray D, Kleinsasser M, Purkayastha S, Bhattacharyya R, et al. Comprehensive public health evaluation of lockdown as a non-pharmaceutical intervention on COVID-19 spread in India: national trends masking state-level variations. BMJ Open. 2020;10(12): e041778.PubMedPubMedCentralCrossRef
44.
go back to reference Ali ST, Wang L, Lau EHY, Xu XK, Du Z, Wu Y, et al. Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science. 2020;369(6507):1106–9.PubMedPubMedCentralCrossRef Ali ST, Wang L, Lau EHY, Xu XK, Du Z, Wu Y, et al. Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science. 2020;369(6507):1106–9.PubMedPubMedCentralCrossRef
45.
46.
go back to reference Huber M, Langen H. Timing matters: the impact of response measures on COVID-19-related hospitalization and death rates in Germany and Switzerland. Swiss J Econ Stat. 2020;156(1):1–19.CrossRef Huber M, Langen H. Timing matters: the impact of response measures on COVID-19-related hospitalization and death rates in Germany and Switzerland. Swiss J Econ Stat. 2020;156(1):1–19.CrossRef
47.
go back to reference Pullano G, Valdano E, Scarpa N, Rubrichi S, Colizza V. Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: a population-based study. Lancet Digit Health. 2020;2(12):e638–49.PubMedPubMedCentralCrossRef Pullano G, Valdano E, Scarpa N, Rubrichi S, Colizza V. Evaluating the effect of demographic factors, socioeconomic factors, and risk aversion on mobility during the COVID-19 epidemic in France under lockdown: a population-based study. Lancet Digit Health. 2020;2(12):e638–49.PubMedPubMedCentralCrossRef
48.
go back to reference Jefferies S, French N, Gilkison C, Graham G, Hope V, Marshall J, et al. COVID-19 in New Zealand and the impact of the national response: a descriptive epidemiological study. Lancet Public Health. 2020;5(11):e612–23.PubMedPubMedCentralCrossRef Jefferies S, French N, Gilkison C, Graham G, Hope V, Marshall J, et al. COVID-19 in New Zealand and the impact of the national response: a descriptive epidemiological study. Lancet Public Health. 2020;5(11):e612–23.PubMedPubMedCentralCrossRef
49.
go back to reference Maier BF, Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020;368(6492):742–6.PubMedPubMedCentralCrossRef Maier BF, Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020;368(6492):742–6.PubMedPubMedCentralCrossRef
50.
go back to reference Collins OC, Duffy KJ. Estimating the impact of lock-down, quarantine and sensitization in a COVID-19 outbreak: lessons from the COVID-19 outbreak in China. PeerJ. 2020;8: e9933.PubMedPubMedCentralCrossRef Collins OC, Duffy KJ. Estimating the impact of lock-down, quarantine and sensitization in a COVID-19 outbreak: lessons from the COVID-19 outbreak in China. PeerJ. 2020;8: e9933.PubMedPubMedCentralCrossRef
51.
go back to reference Braithwaite J, Tran Y, Ellis LA, Westbrook J. The 40 health systems, COVID-19 (40HS, C-19) study. Int J Qual Health Care. 2020;33(1):mzaa113.CrossRef Braithwaite J, Tran Y, Ellis LA, Westbrook J. The 40 health systems, COVID-19 (40HS, C-19) study. Int J Qual Health Care. 2020;33(1):mzaa113.CrossRef
52.
go back to reference Koh WC, Naing L, Wong J. Estimating the impact of physical distancing measures in containing COVID-19: an empirical analysis. Int J Infect Dis. 2020;100:42–9.PubMedPubMedCentralCrossRef Koh WC, Naing L, Wong J. Estimating the impact of physical distancing measures in containing COVID-19: an empirical analysis. Int J Infect Dis. 2020;100:42–9.PubMedPubMedCentralCrossRef
53.
go back to reference Gupta M, Mohanta SS, Rao A, Parameswaran GG, Agarwal M, Arora M, et al. Transmission dynamics of the COVID-19 epidemic in India and modeling optimal lockdown exit strategies. Int J Infect Dis. 2021;103:579–89.PubMedCrossRef Gupta M, Mohanta SS, Rao A, Parameswaran GG, Agarwal M, Arora M, et al. Transmission dynamics of the COVID-19 epidemic in India and modeling optimal lockdown exit strategies. Int J Infect Dis. 2021;103:579–89.PubMedCrossRef
54.
go back to reference New York Times. See Reopening Plans and Mask Manadates for All 50 States; 2021. https://www.nytimes.com/interactive/2020/us/states-reopen-map-coronavirus.html. New York Times. See Reopening Plans and Mask Manadates for All 50 States; 2021. https://​www.​nytimes.​com/​interactive/​2020/​us/​states-reopen-map-coronavirus.​html.​
55.
go back to reference McGrail DJ, Dai J, McAndrews KM, Kalluri R. Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates. PLoS ONE. 2020;15(7): e0236619.PubMedPubMedCentralCrossRef McGrail DJ, Dai J, McAndrews KM, Kalluri R. Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates. PLoS ONE. 2020;15(7): e0236619.PubMedPubMedCentralCrossRef
56.
go back to reference Scarabel F, Pellis L, Bragazzi NL, Wu J. Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies. Infect Dis Modell. 2020;5:316–22. Scarabel F, Pellis L, Bragazzi NL, Wu J. Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies. Infect Dis Modell. 2020;5:316–22.
57.
go back to reference Guirao A. The COVID-19 outbreak in Spain, a simple dynamics model, some lessons, and a theoretical framework for control response. Infect Dis Model. 2020;5:652–69.PubMedPubMedCentral Guirao A. The COVID-19 outbreak in Spain, a simple dynamics model, some lessons, and a theoretical framework for control response. Infect Dis Model. 2020;5:652–69.PubMedPubMedCentral
58.
go back to reference Krishna MV. Mathematical modelling on diffusion and control of COVID-19. Infect Dis Model. 2020;5:588–97. Krishna MV. Mathematical modelling on diffusion and control of COVID-19. Infect Dis Model. 2020;5:588–97.
60.
go back to reference Sebastiani G, Massa M, Riboli E. COVID-19 epidemic in Italy: evolution, projections and impact of government measures. Eur J Epidemiol. 2020;35(4):341–5.PubMedPubMedCentralCrossRef Sebastiani G, Massa M, Riboli E. COVID-19 epidemic in Italy: evolution, projections and impact of government measures. Eur J Epidemiol. 2020;35(4):341–5.PubMedPubMedCentralCrossRef
61.
go back to reference Valencia M, Becerra JE, Reyes JC, Castro KG. Assessment of early mitigation measures against COVID-19 in Puerto Rico: March 15–May 15, 2020. PLoS ONE. 2020;15(10): e0240013.PubMedPubMedCentralCrossRef Valencia M, Becerra JE, Reyes JC, Castro KG. Assessment of early mitigation measures against COVID-19 in Puerto Rico: March 15–May 15, 2020. PLoS ONE. 2020;15(10): e0240013.PubMedPubMedCentralCrossRef
62.
go back to reference Riccardo F, Ajelli M, Andrianou XD, Bella A, Manso MD, Fabiani M, et al. Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020. Eurosurveillance. 2020;25(49):2000790.PubMedCentralCrossRef Riccardo F, Ajelli M, Andrianou XD, Bella A, Manso MD, Fabiani M, et al. Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020. Eurosurveillance. 2020;25(49):2000790.PubMedCentralCrossRef
63.
go back to reference Gao S, Rao J, Kang Y, Liang Y, Kruse J, Dopfer D, et al. Association of mobile phone location data indications of travel and stay-at-home mandates with COVID-19 infection rates in the US. JAMA Netw Open. 2020;3(9): e2020485.PubMedPubMedCentralCrossRef Gao S, Rao J, Kang Y, Liang Y, Kruse J, Dopfer D, et al. Association of mobile phone location data indications of travel and stay-at-home mandates with COVID-19 infection rates in the US. JAMA Netw Open. 2020;3(9): e2020485.PubMedPubMedCentralCrossRef
64.
go back to reference Lurie MN, Silva J, Yorlets RR, Tao J, Chan PA. Coronavirus disease 2019 epidemic doubling time in the United States before and during stay-at-home restrictions. J Infect Dis. 2020;222(10):1601–6.PubMedCrossRef Lurie MN, Silva J, Yorlets RR, Tao J, Chan PA. Coronavirus disease 2019 epidemic doubling time in the United States before and during stay-at-home restrictions. J Infect Dis. 2020;222(10):1601–6.PubMedCrossRef
65.
go back to reference Jarvis CI, Zandvoort aKV, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18:124. Jarvis CI, Zandvoort aKV, Gimma A, Prem K, Klepac P, Rubin GJ, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18:124.
66.
go back to reference Ng Y, Li Z, Chua YX, Chaw WL, Zhao Z, Er B, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore—January 2–February 29, 2020. Morb Mortal Wkly Rep. 2020;69(11):307–11.CrossRef Ng Y, Li Z, Chua YX, Chaw WL, Zhao Z, Er B, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore—January 2–February 29, 2020. Morb Mortal Wkly Rep. 2020;69(11):307–11.CrossRef
67.
go back to reference Cobb JS, Seale MA. Examining the effect of social distancing on the compound growth rate of COVID-19 at the county level (United States) using statistical analyses and a random forest machine learning model. Public Health. 2020;185:27–9.PubMedCrossRef Cobb JS, Seale MA. Examining the effect of social distancing on the compound growth rate of COVID-19 at the county level (United States) using statistical analyses and a random forest machine learning model. Public Health. 2020;185:27–9.PubMedCrossRef
68.
go back to reference Jardine R, Wright J, Samad Z, Bhutta ZA. Analysis of COVID-19 Burden, epidemiology and mitigation strategies in Muslim majority countries. East Mediter Health J. 2020;26(10):1173–83.CrossRef Jardine R, Wright J, Samad Z, Bhutta ZA. Analysis of COVID-19 Burden, epidemiology and mitigation strategies in Muslim majority countries. East Mediter Health J. 2020;26(10):1173–83.CrossRef
69.
go back to reference Murillo-Zamora E, Guzmán-Esquivel J, Sánchez-Piña RA, Cedeño-Laurent G, Delgado-Enciso I, Mendoza-Cano O. Physical distancing reduced the incidence of influenza and supports a favorable impact on SARS-CoV-2 spread in Mexico. J Infect Develop Countries. 2020;14(9):953–6.CrossRef Murillo-Zamora E, Guzmán-Esquivel J, Sánchez-Piña RA, Cedeño-Laurent G, Delgado-Enciso I, Mendoza-Cano O. Physical distancing reduced the incidence of influenza and supports a favorable impact on SARS-CoV-2 spread in Mexico. J Infect Develop Countries. 2020;14(9):953–6.CrossRef
70.
go back to reference Verma BK, Verma M, Verma VK, Abdullah RB, Nath DC, Khan HTA, et al. Global lockdown: an effective safeguard in responding to the threat of COVID-19. J Eval Clin Pract. 2020;26(6):1592–8.PubMedPubMedCentralCrossRef Verma BK, Verma M, Verma VK, Abdullah RB, Nath DC, Khan HTA, et al. Global lockdown: an effective safeguard in responding to the threat of COVID-19. J Eval Clin Pract. 2020;26(6):1592–8.PubMedPubMedCentralCrossRef
71.
go back to reference Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I, Lacey B, et al. Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ. 2020;370: m2743.PubMedCrossRef Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I, Lacey B, et al. Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ. 2020;370: m2743.PubMedCrossRef
72.
go back to reference Wagner AB, Hill EL, Ryan SE, Sun Z, Deng G, Bhadane S, et al. Social distancing merely stabilized COVID-19 in the United States. Stat. 2020;9(1): e302.PubMedCrossRef Wagner AB, Hill EL, Ryan SE, Sun Z, Deng G, Bhadane S, et al. Social distancing merely stabilized COVID-19 in the United States. Stat. 2020;9(1): e302.PubMedCrossRef
73.
go back to reference Silva L, Filho DF, Fernandes A. The effect of lockdown on the COVID-19 epidemic in Brazil: evidence from an interrupted time series design. Cad Saude Publica. 2020;36(10): e00213920.PubMedCrossRef Silva L, Filho DF, Fernandes A. The effect of lockdown on the COVID-19 epidemic in Brazil: evidence from an interrupted time series design. Cad Saude Publica. 2020;36(10): e00213920.PubMedCrossRef
74.
go back to reference Medline A, Hayes L, Valdez K, Hayashi A, Vahedi F, Capell W, et al. Evaluating the impact of stay-at-home orders on the time to reach the peak burden of COVID-19 cases and deaths: does timing matter? BMC Public Health. 2020;20:1750.PubMedPubMedCentralCrossRef Medline A, Hayes L, Valdez K, Hayashi A, Vahedi F, Capell W, et al. Evaluating the impact of stay-at-home orders on the time to reach the peak burden of COVID-19 cases and deaths: does timing matter? BMC Public Health. 2020;20:1750.PubMedPubMedCentralCrossRef
75.
go back to reference Arshed N, Meo MS, Farooq F. Empirical assessment of government policies and flattening of the COVID 19 curve. J Public Aff. 2020;20: e2333.PubMedPubMedCentral Arshed N, Meo MS, Farooq F. Empirical assessment of government policies and flattening of the COVID 19 curve. J Public Aff. 2020;20: e2333.PubMedPubMedCentral
76.
go back to reference Holtz D, Zhao M, Benzell SG, Cao CY, Rahimian MA, Yang J, et al. Interdependence and the cost of uncoordinated responses to COVID-19. Proc Natl Acad Sci. 2020;117(33):19837–43.PubMedPubMedCentralCrossRef Holtz D, Zhao M, Benzell SG, Cao CY, Rahimian MA, Yang J, et al. Interdependence and the cost of uncoordinated responses to COVID-19. Proc Natl Acad Sci. 2020;117(33):19837–43.PubMedPubMedCentralCrossRef
77.
go back to reference Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis. 2021;21(2):193–202.PubMedCrossRef Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis. 2021;21(2):193–202.PubMedCrossRef
78.
go back to reference Salje H, Kiem CT, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208–11.PubMedPubMedCentralCrossRef Salje H, Kiem CT, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208–11.PubMedPubMedCentralCrossRef
79.
go back to reference Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc Natl Acad Sci. 2020;117(19):10484–91.PubMedPubMedCentralCrossRef Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc Natl Acad Sci. 2020;117(19):10484–91.PubMedPubMedCentralCrossRef
80.
go back to reference Dehning J, Zierenberg J, Spitzner FP, Wibral M, Neto JP, Wilczek M, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science. 2020;369(6500):eabb9789.PubMedCrossRef Dehning J, Zierenberg J, Spitzner FP, Wibral M, Neto JP, Wilczek M, et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science. 2020;369(6500):eabb9789.PubMedCrossRef
81.
go back to reference Anderson SC, Edwards AM, Yerlanov M, Mulberry N, Stockdale JE, Iyaniwura SA, et al. Quantifying the impact of COVID-19 control measures using a bayesian model of physical distancing. PLoS Comput Biol. 2020;16(12): e1008274.PubMedPubMedCentralCrossRef Anderson SC, Edwards AM, Yerlanov M, Mulberry N, Stockdale JE, Iyaniwura SA, et al. Quantifying the impact of COVID-19 control measures using a bayesian model of physical distancing. PLoS Comput Biol. 2020;16(12): e1008274.PubMedPubMedCentralCrossRef
82.
go back to reference Wang T, Wu Y, Lau JYN, Yu Y, Liu L, Li J, et al. A four-compartment model for the COVID-19 infection—implications on infection kinetics, control measures, and lockdown exit strategies. Precis Clin Med. 2020;3(2):104–12.PubMedPubMedCentralCrossRef Wang T, Wu Y, Lau JYN, Yu Y, Liu L, Li J, et al. A four-compartment model for the COVID-19 infection—implications on infection kinetics, control measures, and lockdown exit strategies. Precis Clin Med. 2020;3(2):104–12.PubMedPubMedCentralCrossRef
83.
go back to reference McCarthy Z, Xiao Y, Scarabel F, Tang B, Bragazzi NL, Nah K, et al. Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions. J Math Ind. 2020;10:28.PubMedPubMedCentralCrossRef McCarthy Z, Xiao Y, Scarabel F, Tang B, Bragazzi NL, Nah K, et al. Quantifying the shift in social contact patterns in response to non-pharmaceutical interventions. J Math Ind. 2020;10:28.PubMedPubMedCentralCrossRef
84.
go back to reference Dandekar R, Rackauckas C, Barbastathis G. A Machine Learning-Aided Global Diagnostic and Comparative Tool to Assess Effect of Quarantine Control in COVID-19 Spread. Patterns. 2020;1(9): 100145.PubMedPubMedCentralCrossRef Dandekar R, Rackauckas C, Barbastathis G. A Machine Learning-Aided Global Diagnostic and Comparative Tool to Assess Effect of Quarantine Control in COVID-19 Spread. Patterns. 2020;1(9): 100145.PubMedPubMedCentralCrossRef
85.
go back to reference Crokidakis N. COVID-19 Spreading in Rio de Janeiro, Brazil: Do the Policies of Social Isolation Really Work? Chaos, Solitons & Fractals. 2020;136: 109930.CrossRef Crokidakis N. COVID-19 Spreading in Rio de Janeiro, Brazil: Do the Policies of Social Isolation Really Work? Chaos, Solitons & Fractals. 2020;136: 109930.CrossRef
86.
go back to reference Ge J, He D, Lin Z, Zhu H, Zhuang Z. Fourier response system and spatial propagation of COVID-19 in China by a network model. Math Biosci. 2020;330: 108484.PubMedPubMedCentralCrossRef Ge J, He D, Lin Z, Zhu H, Zhuang Z. Fourier response system and spatial propagation of COVID-19 in China by a network model. Math Biosci. 2020;330: 108484.PubMedPubMedCentralCrossRef
87.
go back to reference Manevski D, Gorenjec NR, Kejžar N, Blagus R. Modeling COVID-19 pandemic using bayesian analysis with application to slovene data. Math Biosci. 2020;329: 108466.PubMedPubMedCentralCrossRef Manevski D, Gorenjec NR, Kejžar N, Blagus R. Modeling COVID-19 pandemic using bayesian analysis with application to slovene data. Math Biosci. 2020;329: 108466.PubMedPubMedCentralCrossRef
90.
go back to reference Shi Q, Hu Y, Peng B, Tang XJ, Wang W, Su K, et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat Med. 2020;27:86–93.PubMedCrossRef Shi Q, Hu Y, Peng B, Tang XJ, Wang W, Su K, et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat Med. 2020;27:86–93.PubMedCrossRef
91.
go back to reference Adekunle A, Meehan M, Rojas-Alvarez D, Trauer J, McBryde E. Delaying the COVID-19 epidemic in Australia: evaluating the effectiveness of international travel bans. Aust N Z J Public Health. 2020;44(4):257–9.PubMedPubMedCentralCrossRef Adekunle A, Meehan M, Rojas-Alvarez D, Trauer J, McBryde E. Delaying the COVID-19 epidemic in Australia: evaluating the effectiveness of international travel bans. Aust N Z J Public Health. 2020;44(4):257–9.PubMedPubMedCentralCrossRef
92.
go back to reference Li Y, Wang LW, Peng ZH, Shen HB. Basic reproduction number and predicted trends of coronavirus disease 2019 epidemic in the Mainland of China. Infect Dis Poverty. 2020;9:94.PubMedPubMedCentralCrossRef Li Y, Wang LW, Peng ZH, Shen HB. Basic reproduction number and predicted trends of coronavirus disease 2019 epidemic in the Mainland of China. Infect Dis Poverty. 2020;9:94.PubMedPubMedCentralCrossRef
93.
go back to reference Kendall M, Milsom L, Abeler-Dörner L, Wymant C, Ferretti L, Briers M, et al. Epidemiological changes on the isle of wight after the launch of the NHS test and trace programme: a preliminary analysis. Lancet Digit Health. 2020;2(12):e658–66.PubMedPubMedCentralCrossRef Kendall M, Milsom L, Abeler-Dörner L, Wymant C, Ferretti L, Briers M, et al. Epidemiological changes on the isle of wight after the launch of the NHS test and trace programme: a preliminary analysis. Lancet Digit Health. 2020;2(12):e658–66.PubMedPubMedCentralCrossRef
95.
go back to reference Tian T, Luo W, Tan J, Jiang Y, Chen M, Pan W, et al. The timing and effectiveness of implementing mild interventions of COVID-19 in large industrial regions via a synthetic control method. Stat Interface. 2021;14:3–12.CrossRef Tian T, Luo W, Tan J, Jiang Y, Chen M, Pan W, et al. The timing and effectiveness of implementing mild interventions of COVID-19 in large industrial regions via a synthetic control method. Stat Interface. 2021;14:3–12.CrossRef
96.
go back to reference Chernozhukov V, Kasahara H, Schrimpf P. Causal impact of masks, policies, behavior on early Covid-19 pandemic in the U.S. J Econ. 2021;220(1):23–62.CrossRef Chernozhukov V, Kasahara H, Schrimpf P. Causal impact of masks, policies, behavior on early Covid-19 pandemic in the U.S. J Econ. 2021;220(1):23–62.CrossRef
97.
go back to reference Friedson AI, McNichols D, Sabia JJ, Dave D. Shelter-in-place orders and public health: evidence from California during the COVID-19 pandemic. J Policy Anal Manag. 2020;40(1):258–83.CrossRef Friedson AI, McNichols D, Sabia JJ, Dave D. Shelter-in-place orders and public health: evidence from California during the COVID-19 pandemic. J Policy Anal Manag. 2020;40(1):258–83.CrossRef
98.
go back to reference Marschner IC. Back-projection of COVID-19 diagnosis counts to assess infection incidence and control measures: analysis of Australian data. Epidemiol Infect. 2020;148: e97.PubMedCrossRef Marschner IC. Back-projection of COVID-19 diagnosis counts to assess infection incidence and control measures: analysis of Australian data. Epidemiol Infect. 2020;148: e97.PubMedCrossRef
99.
go back to reference Valcarcel B, Avilez JL, Torres-Roman JS, Poterico JA, Bazalar-Palacios J, Vecchia CL. The Effect of Early-Stage Public Health Policies in the Transmission of COVID-19 for South American Countries. Rev Panam Salud Publica. 2020;44: e148.PubMedPubMedCentralCrossRef Valcarcel B, Avilez JL, Torres-Roman JS, Poterico JA, Bazalar-Palacios J, Vecchia CL. The Effect of Early-Stage Public Health Policies in the Transmission of COVID-19 for South American Countries. Rev Panam Salud Publica. 2020;44: e148.PubMedPubMedCentralCrossRef
100.
go back to reference Wong CKH, Wong JYH, Tang EHM, Au CH, Lau KTK, Wai AKC. Impact of national containment measures on decelerating the increase in daily new cases of COVID-19 in 54 countries and 4 epicenters of the pandemic: comparative observational study. J Med Internet Res. 2020;22(7): e19904.PubMedPubMedCentralCrossRef Wong CKH, Wong JYH, Tang EHM, Au CH, Lau KTK, Wai AKC. Impact of national containment measures on decelerating the increase in daily new cases of COVID-19 in 54 countries and 4 epicenters of the pandemic: comparative observational study. J Med Internet Res. 2020;22(7): e19904.PubMedPubMedCentralCrossRef
101.
go back to reference Riley S, Ainslie KEC, Eales O, Walters CE, Wang H, Atchison C, et al. Resurgence of SARS-CoV-2: detection by community viral surveillance. Science. 2021;372(6545):990–5.PubMedPubMedCentralCrossRef Riley S, Ainslie KEC, Eales O, Walters CE, Wang H, Atchison C, et al. Resurgence of SARS-CoV-2: detection by community viral surveillance. Science. 2021;372(6545):990–5.PubMedPubMedCentralCrossRef
102.
103.
go back to reference Lison A, Persson J, Banholzer N, Feuerriegel S. Estimating the effect of mobility on SARS-CoV-2 transmission during the first and second wave of the COVID-19 epidemic, Switzerland, March to December 2020. Eurosurveillance. 2022;27(10):2100374.PubMedCentralCrossRef Lison A, Persson J, Banholzer N, Feuerriegel S. Estimating the effect of mobility on SARS-CoV-2 transmission during the first and second wave of the COVID-19 epidemic, Switzerland, March to December 2020. Eurosurveillance. 2022;27(10):2100374.PubMedCentralCrossRef
104.
go back to reference Coletti P, Wambua J, Gimma A, Willem L, Vercruysse S, Vanhoutte B, et al. CoMix: comparing mixing patterns in the Belgian population during and after lockdown. Sci Rep. 2020;10:21885.PubMedPubMedCentralCrossRef Coletti P, Wambua J, Gimma A, Willem L, Vercruysse S, Vanhoutte B, et al. CoMix: comparing mixing patterns in the Belgian population during and after lockdown. Sci Rep. 2020;10:21885.PubMedPubMedCentralCrossRef
105.
go back to reference Persson J, Parie JF, Feuerriegel S. Monitoring the COVID-19 epidemic with nationwide telecommunication data. Proc Natl Acad Sci. 2021;118(26): e2100664118.PubMedPubMedCentralCrossRef Persson J, Parie JF, Feuerriegel S. Monitoring the COVID-19 epidemic with nationwide telecommunication data. Proc Natl Acad Sci. 2021;118(26): e2100664118.PubMedPubMedCentralCrossRef
107.
go back to reference Allcott H, Boxell L, Conway JC, Ferguson BA, Gentzkow M, Goldman B. What explains temporal and geographic variation in the early US coronavirus pandemic? National Bureau of Economic Research; 2020. 27965. Allcott H, Boxell L, Conway JC, Ferguson BA, Gentzkow M, Goldman B. What explains temporal and geographic variation in the early US coronavirus pandemic? National Bureau of Economic Research; 2020. 27965.
108.
go back to reference Yan Y, Malik AA, Bayham J, Fenichel EP, Couzens C, Omer SB. Measuring voluntary and policy-induced social distancing behavior during the COVID-19 pandemic. Proc Natl Acad Sci. 2021;118(16): e2008814118.PubMedPubMedCentralCrossRef Yan Y, Malik AA, Bayham J, Fenichel EP, Couzens C, Omer SB. Measuring voluntary and policy-induced social distancing behavior during the COVID-19 pandemic. Proc Natl Acad Sci. 2021;118(16): e2008814118.PubMedPubMedCentralCrossRef
109.
go back to reference Grossman G, Kim S, Rexer JM, Thirumurthy H. Political partisanship influences behavioral responses to governors’ recommendations for COVID-19 prevention in the United States. Proc Natl Acad Sci. 2020;117(39):24144–53.PubMedPubMedCentralCrossRef Grossman G, Kim S, Rexer JM, Thirumurthy H. Political partisanship influences behavioral responses to governors’ recommendations for COVID-19 prevention in the United States. Proc Natl Acad Sci. 2020;117(39):24144–53.PubMedPubMedCentralCrossRef
110.
go back to reference Herby J. A first literature review: lockdowns only had a small effect on COVID-19. Social Science Research Network (Preprint); 2021. 3764553. Herby J. A first literature review: lockdowns only had a small effect on COVID-19. Social Science Research Network (Preprint); 2021. 3764553.
111.
go back to reference Hernán MA. A definition of causal effect for epidemiological research. J Epidemiol Commun Health. 2004;58(4):265–71.CrossRef Hernán MA. A definition of causal effect for epidemiological research. J Epidemiol Commun Health. 2004;58(4):265–71.CrossRef
112.
go back to reference Bradford A. Association or causation. Proc R Soc Med. 1965;58:295–300. Bradford A. Association or causation. Proc R Soc Med. 1965;58:295–300.
114.
go back to reference Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015;12:14.PubMedPubMedCentralCrossRef Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015;12:14.PubMedPubMedCentralCrossRef
115.
go back to reference Cox LA. Modernizing the Bradford Hill Criteria for Assessing Causal Relationships in Observational Data. Crit Rev Toxicol. 2018;48(8):682–712.PubMedCrossRef Cox LA. Modernizing the Bradford Hill Criteria for Assessing Causal Relationships in Observational Data. Crit Rev Toxicol. 2018;48(8):682–712.PubMedCrossRef
116.
go back to reference Garin M, Limnios M, Nicolaï A, Bargiotas I, Boulant O, Chick S, Models epidemic, for COVID-19 during the first wave from February to May 2020: a methodological review. ArXiv [Preprint]. ;2021(2109):01450. Garin M, Limnios M, Nicolaï A, Bargiotas I, Boulant O, Chick S, Models epidemic, for COVID-19 during the first wave from February to May 2020: a methodological review. ArXiv [Preprint]. ;2021(2109):01450.
Metadata
Title
The methodologies to assess the effectiveness of non-pharmaceutical interventions during COVID-19: a systematic review
Authors
Nicolas Banholzer
Adrian Lison
Dennis Özcelik
Tanja Stadler
Stefan Feuerriegel
Werner Vach
Publication date
24-09-2022
Publisher
Springer Netherlands
Keyword
COVID-19
Published in
European Journal of Epidemiology / Issue 10/2022
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-022-00908-y

Other articles of this Issue 10/2022

European Journal of Epidemiology 10/2022 Go to the issue

CORRESPONDENCE

The Authors' Reply