Skip to main content
Top
Published in: European Journal of Epidemiology 7/2021

01-07-2021 | Coronavirus | REVIEW

Prevalence of SARS-CoV-2 RNA on inanimate surfaces: a systematic review and meta-analysis

Authors: Simone Belluco, Marzia Mancin, Filippo Marzoli, Alessio Bortolami, Eva Mazzetto, Alessandra Pezzuto, Michela Favretti, Calogero Terregino, Francesco Bonfante, Roberto Piro

Published in: European Journal of Epidemiology | Issue 7/2021

Login to get access

Abstract

Coronavirus disease (COVID-19) is a respiratory disease affecting many people and able to be transmitted through direct and perhaps indirect contact. Direct contact transmission, mediated by aerosols or droplets, is widely demonstrated, whereas indirect transmission is only supported by collateral evidence such as virus persistence on inanimate surfaces and data from other similar viruses. The present systematic review aims to estimate SARS-CoV-2 prevalence on inanimate surfaces, identifying risk levels according to surface characteristics. Data were obtained from studies in published papers collected from two databases (PubMed and Embase) with the last search on 1 September 2020. Included studies had to be papers in English, had to deal with coronavirus and had to consider inanimate surfaces in real settings. Studies were coded according to our assessment of the risk that the investigated surfaces could be contaminated by SARS-CoV-2. A meta-analysis and a metaregression were carried out to quantify virus RNA prevalence and to identify important factors driving differences among studies. Thirty-nine out of forty retrieved paper reported studies carried out in healthcare settings on the prevalence of virus RNA, five studies carry out also analyses through cell culture and six tested the viability of isolated viruses. Overall prevalences of SARS-CoV-2 RNA on high-, medium- and low-risk surfaces were 0.22 (CI95 [0.152–0.296]), 0.04 (CI95 [0.007–0.090]), and 0.00 (CI95 [0.00–0.019]), respectively. The duration surfaces were exposed to virus sources (patients) was the main factor explaining differences in prevalence.
Appendix
Available only for authorised users
Literature
5.
go back to reference Patel KP, Vunnam SR, Patel PA, Krill KL, Korbitz PM, Gallagher JP, et al. Transmission of SARS-CoV-2: an update of current literature. Eur J Clin Microbiol Infect Dis. 2020;39:2005.PubMedCrossRefPubMedCentral Patel KP, Vunnam SR, Patel PA, Krill KL, Korbitz PM, Gallagher JP, et al. Transmission of SARS-CoV-2: an update of current literature. Eur J Clin Microbiol Infect Dis. 2020;39:2005.PubMedCrossRefPubMedCentral
6.
go back to reference Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020;26:1343.CrossRefPubMedPubMedCentral Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020;26:1343.CrossRefPubMedPubMedCentral
8.
go back to reference Cozad A, Jones RD. Disinfection and the prevention of infectious disease. Am J Infect Control. 2003;31:243–54.PubMedCrossRef Cozad A, Jones RD. Disinfection and the prevention of infectious disease. Am J Infect Control. 2003;31:243–54.PubMedCrossRef
10.
go back to reference Howie R, Alfa MJ, Coombs K. Survival of enveloped and non-enveloped viruses on surfaces compared with other micro-organisms and impact of suboptimal disinfectant exposure. J Hosp Infect. 2008;69:368–76.PubMedCrossRef Howie R, Alfa MJ, Coombs K. Survival of enveloped and non-enveloped viruses on surfaces compared with other micro-organisms and impact of suboptimal disinfectant exposure. J Hosp Infect. 2008;69:368–76.PubMedCrossRef
11.
go back to reference Marzoli F, Bortolami A, Pezzuto A, Mazzetto E, Piro R, Terregino C, et al. A systematic review of human coronaviruses survival on environmental surfaces. Sci Total Environ. 2021;778:146191.PubMedPubMedCentralCrossRef Marzoli F, Bortolami A, Pezzuto A, Mazzetto E, Piro R, Terregino C, et al. A systematic review of human coronaviruses survival on environmental surfaces. Sci Total Environ. 2021;778:146191.PubMedPubMedCentralCrossRef
12.
go back to reference FAO, WHO. COVID-19 and Food Safety: Guidance for food businesses: Interim guidance. COVID-19 Food Saf Guid food businesses Interim Guid. 2020;1–6. FAO, WHO. COVID-19 and Food Safety: Guidance for food businesses: Interim guidance. COVID-19 Food Saf Guid food businesses Interim Guid. 2020;1–6.
14.
go back to reference Thomas J, Brunton J, Graziosi S (2010) EPPI-Reviewer 4: software for research synthesis. London: Social science research unit, Institute of education: EPPI-Centre Software. Thomas J, Brunton J, Graziosi S (2010) EPPI-Reviewer 4: software for research synthesis. London: Social science research unit, Institute of education: EPPI-Centre Software.
15.
go back to reference WHO Global. Surface sampling of coronavirus disease (COVID-19): A practical “how to” protocol for health care and public health professionals. COVID-19 WHO Surveilllance, case Investig Epidemiol Protoc. 2020;1–26. WHO Global. Surface sampling of coronavirus disease (COVID-19): A practical “how to” protocol for health care and public health professionals. COVID-19 WHO Surveilllance, case Investig Epidemiol Protoc. 2020;1–26.
16.
go back to reference WHO. Surface sampling of coronavirus disease (COVID-19): A practical “how to” protocol for health care and public health professionals. 2020. WHO. Surface sampling of coronavirus disease (COVID-19): A practical “how to” protocol for health care and public health professionals. 2020.
17.
go back to reference Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Softw. 2010;36:1–48.CrossRef Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Softw. 2010;36:1–48.CrossRef
18.
go back to reference R Core Team. R: a language and environment for statistical computing. Vienna R Found. Stat. Comput. 2019. R Core Team. R: a language and environment for statistical computing. Vienna R Found. Stat. Comput. 2019.
19.
go back to reference Freeman MF, Tukey JW. Transformations related to the angular and the square root on JSTOR. Ann Math Stat. 1950;21:607–11.CrossRef Freeman MF, Tukey JW. Transformations related to the angular and the square root on JSTOR. Ann Math Stat. 1950;21:607–11.CrossRef
20.
go back to reference Barendregt JJ, Doi S, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Commun Health. 2013;67:974–8.CrossRef Barendregt JJ, Doi S, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Commun Health. 2013;67:974–8.CrossRef
21.
go back to reference Miller JJ. The inverse of the freeman-tukey double arcsine transformation. Am Stat. 1978;32:138. Miller JJ. The inverse of the freeman-tukey double arcsine transformation. Am Stat. 1978;32:138.
22.
go back to reference Nakagawa S, Santos ESA. Methodological issues and advances in biological meta-analysis. Evol Ecol. 2012;26:1253–74.CrossRef Nakagawa S, Santos ESA. Methodological issues and advances in biological meta-analysis. Evol Ecol. 2012;26:1253–74.CrossRef
23.
go back to reference Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.PubMedCrossRef Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.PubMedCrossRef
24.
go back to reference Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30:261–93.CrossRef Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30:261–93.CrossRef
25.
go back to reference Raudenbush SW. 16. Analyzing effect sizes: random-effects models. In: Cooper H, Hedges LV, Valentine JC, editors. Handb Res Synth meta-analysis. New York: Russel Sage Foundation; 2009. Raudenbush SW. 16. Analyzing effect sizes: random-effects models. In: Cooper H, Hedges LV, Valentine JC, editors. Handb Res Synth meta-analysis. New York: Russel Sage Foundation; 2009.
26.
go back to reference Berkey CS, Hoaglin DC, Mosteller F, Colditz GA. Meta-analysis of multiple outcomes by regression with random effects. Stat Med. 1998;17:2537–50.PubMedCrossRef Berkey CS, Hoaglin DC, Mosteller F, Colditz GA. Meta-analysis of multiple outcomes by regression with random effects. Stat Med. 1998;17:2537–50.PubMedCrossRef
27.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing on JSTOR. J R Stat Soc Ser B. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing on JSTOR. J R Stat Soc Ser B. 1995;57:289–300.
28.
go back to reference Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50:346–63.CrossRef Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50:346–63.CrossRef
29.
go back to reference Stanley TD, Doucouliagos H. Meta-regression approximations to reduce publication selection bias. Res Synth Methods. 2014;5:60–78.PubMedCrossRef Stanley TD, Doucouliagos H. Meta-regression approximations to reduce publication selection bias. Res Synth Methods. 2014;5:60–78.PubMedCrossRef
30.
go back to reference Ahn JY, An S, Sohn Y, Cho Y, Hyun JH, Baek YJ, et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. J Hosp Infect. 2020;106:570–6.PubMedPubMedCentralCrossRef Ahn JY, An S, Sohn Y, Cho Y, Hyun JH, Baek YJ, et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. J Hosp Infect. 2020;106:570–6.PubMedPubMedCentralCrossRef
31.
go back to reference Aytogan H, Ayintap E, N OY. . Detection of coronavirus disease 2019 viral material on environmental surfaces of an ophthalmology examination room. JAMA Ophthalmol. 2020;138:990.PubMedCrossRefPubMedCentral Aytogan H, Ayintap E, N OY. . Detection of coronavirus disease 2019 viral material on environmental surfaces of an ophthalmology examination room. JAMA Ophthalmol. 2020;138:990.PubMedCrossRefPubMedCentral
32.
go back to reference Bin SY, Heo JY, Song MS, Lee J, Kim EH, Park SJ, et al. Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea. Clin Infect Dis. 2015;62:755–60.PubMedCrossRef Bin SY, Heo JY, Song MS, Lee J, Kim EH, Park SJ, et al. Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea. Clin Infect Dis. 2015;62:755–60.PubMedCrossRef
33.
go back to reference Bloise I, Gómez-Arroyo B, García-Rodríguez J. Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory. J Hosp Infect. 2020;105:784.PubMedPubMedCentralCrossRef Bloise I, Gómez-Arroyo B, García-Rodríguez J. Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory. J Hosp Infect. 2020;105:784.PubMedPubMedCentralCrossRef
35.
go back to reference Booth TF, Kournikakis B, Bastien N, Ho J, Kobasa D, Stadnyk L, et al. Detection of Airborne Severe Acute Respiratory Syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J Infect Dis. 2005;191:1472–7.PubMedCrossRef Booth TF, Kournikakis B, Bastien N, Ho J, Kobasa D, Stadnyk L, et al. Detection of Airborne Severe Acute Respiratory Syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J Infect Dis. 2005;191:1472–7.PubMedCrossRef
36.
go back to reference Cheng VC-C, Wong S-C, Chan VW-M, So SY-C, Chen JH-K, Yip CC-Y, et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol. 2020;106:570. Cheng VC-C, Wong S-C, Chan VW-M, So SY-C, Chen JH-K, Yip CC-Y, et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol. 2020;106:570.
37.
go back to reference Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11:2800. Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11:2800.
38.
go back to reference Colaneri M, Seminari E, Novati S, Asperges E, Biscarini S, Piralla A, et al. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect England. 2020;26:1094.e1-1094.e5.CrossRef Colaneri M, Seminari E, Novati S, Asperges E, Biscarini S, Piralla A, et al. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect England. 2020;26:1094.e1-1094.e5.CrossRef
40.
go back to reference Dowell SF, Simmerman JM, Erdman DD, Wu JSJ, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis. 2004;39:652–7.PubMedCrossRef Dowell SF, Simmerman JM, Erdman DD, Wu JSJ, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis. 2004;39:652–7.PubMedCrossRef
41.
go back to reference Guo Z-D, Wang Z-Y, Zhang S-F, Li X, Li L, Li C, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020;26:1583.PubMedCrossRef Guo Z-D, Wang Z-Y, Zhang S-F, Li X, Li L, Li C, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020;26:1583.PubMedCrossRef
42.
go back to reference Hoang VT, Sow D, Belhouchat K, Dao TL, Ly TDA, Fenollar F, et al. Environmental investigation of respiratory pathogens during the Hajj 2016 and 2018. Travel Med Infect Dis. 2020;33:101500.PubMedCrossRef Hoang VT, Sow D, Belhouchat K, Dao TL, Ly TDA, Fenollar F, et al. Environmental investigation of respiratory pathogens during the Hajj 2016 and 2018. Travel Med Infect Dis. 2020;33:101500.PubMedCrossRef
43.
go back to reference Ikonen N, Savolainen-Kopra C, Je E, Kulmala I, Pasanen P, Salmela A, et al. Deposition of respiratory virus pathogens on frequently touched surfaces at airports. BMC Infect Dis. 2018;18:437.PubMedPubMedCentralCrossRef Ikonen N, Savolainen-Kopra C, Je E, Kulmala I, Pasanen P, Salmela A, et al. Deposition of respiratory virus pathogens on frequently touched surfaces at airports. BMC Infect Dis. 2018;18:437.PubMedPubMedCentralCrossRef
44.
go back to reference Jerry J, O’Regan E, O’Sullivan L, Lynch M, Brady D. Do established infection prevention and control measures prevent spread of SARS-CoV-2 to the hospital environment beyond the patient room? J Hosp Infect England. 2020;105:589–92.CrossRef Jerry J, O’Regan E, O’Sullivan L, Lynch M, Brady D. Do established infection prevention and control measures prevent spread of SARS-CoV-2 to the hospital environment beyond the patient room? J Hosp Infect England. 2020;105:589–92.CrossRef
45.
go back to reference Jiang F-C, Jiang X-L, Wang Z-G, Meng Z-H, Shao S-F, Anderson BD, et al. Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms. Emerg Infect Dis. 2020;26. Jiang F-C, Jiang X-L, Wang Z-G, Meng Z-H, Shao S-F, Anderson BD, et al. Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms. Emerg Infect Dis. 2020;26.
46.
47.
go back to reference Kim SH, Chang SY, Sung M, Park JH, Bin Kim H, Lee H, et al. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus contamination in air and surrounding environment in MERS isolation wards. Clin Infect Dis. 2016;63:363–9.PubMedCrossRef Kim SH, Chang SY, Sung M, Park JH, Bin Kim H, Lee H, et al. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus contamination in air and surrounding environment in MERS isolation wards. Clin Infect Dis. 2016;63:363–9.PubMedCrossRef
48.
go back to reference Lee S, Dy L, Wg L, Kang B, Ys J, Ryu B, et al. Detection of novel coronavirus on the surface of environmental materials contaminated by COVID-19 patients in the Republic of Korea. Osong public Heal Res Perspect. 2020;11:128–32.CrossRef Lee S, Dy L, Wg L, Kang B, Ys J, Ryu B, et al. Detection of novel coronavirus on the surface of environmental materials contaminated by COVID-19 patients in the Republic of Korea. Osong public Heal Res Perspect. 2020;11:128–32.CrossRef
50.
go back to reference Lv J, Yang J, Xue J, Zhu P, Liu L, Li S. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci Total Environ. 2020;742:140370.PubMedPubMedCentralCrossRef Lv J, Yang J, Xue J, Zhu P, Liu L, Li S. Detection of SARS-CoV-2 RNA residue on object surfaces in nucleic acid testing laboratory using droplet digital PCR. Sci Total Environ. 2020;742:140370.PubMedPubMedCentralCrossRef
52.
go back to reference Mouchtouri V, Koureas M, Kyritsi M, Vontas A, Kourentis L, Sapounas S, et al. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int J Hyg Environ Health. 2020;230:113599.PubMedPubMedCentralCrossRef Mouchtouri V, Koureas M, Kyritsi M, Vontas A, Kourentis L, Sapounas S, et al. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int J Hyg Environ Health. 2020;230:113599.PubMedPubMedCentralCrossRef
53.
go back to reference Nelson A, Kassimatis J, Estoque J, Yang C, McKee G, Bryce E, et al. Environmental detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from medical equipment in long-term care facilities undergoing COVID-19 outbreaks. Am J Infect Control. 2020;49(2):265–8.PubMedPubMedCentralCrossRef Nelson A, Kassimatis J, Estoque J, Yang C, McKee G, Bryce E, et al. Environmental detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from medical equipment in long-term care facilities undergoing COVID-19 outbreaks. Am J Infect Control. 2020;49(2):265–8.PubMedPubMedCentralCrossRef
54.
go back to reference Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA - J Am Med Assoc. 2020;323:1610–2.CrossRef Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA - J Am Med Assoc. 2020;323:1610–2.CrossRef
55.
go back to reference Pasquarella C, Me C, Bizzarro A, Veronesi L, Affanni P, Meschi T, et al. Detection of SARS-CoV-2 on hospital surfaces. Acta Biomed. 2020;91:76–8.PubMedPubMedCentral Pasquarella C, Me C, Bizzarro A, Veronesi L, Affanni P, Meschi T, et al. Detection of SARS-CoV-2 on hospital surfaces. Acta Biomed. 2020;91:76–8.PubMedPubMedCentral
56.
go back to reference Peyrony O, Ellouze S, Salmona M, Feghoul L, et al. Surfaces and equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the emergency department at a university hospital. Int J Hyg Environ Health. 2020;230:113600.PubMedPubMedCentralCrossRef Peyrony O, Ellouze S, Salmona M, Feghoul L, et al. Surfaces and equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the emergency department at a university hospital. Int J Hyg Environ Health. 2020;230:113600.PubMedPubMedCentralCrossRef
57.
go back to reference Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, NV O, , et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan. Italy Sci Total Environ. 2020;742:140540.PubMedCrossRef Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, NV O, , et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan. Italy Sci Total Environ. 2020;742:140540.PubMedCrossRef
59.
go back to reference Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager H, Santarpia GW, et al. Aerosol and surface transmission potential of SARS-CoV-2. Sci Rep. 2020;10:1–19. Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager H, Santarpia GW, et al. Aerosol and surface transmission potential of SARS-CoV-2. Sci Rep. 2020;10:1–19.
60.
go back to reference Shin K, Hs P, Lee J, Jk L. Environmental surface testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during prolonged isolation of an asymptomatic carrier. Infect Control Hosp Epidemiol. 2020;11:1328.CrossRef Shin K, Hs P, Lee J, Jk L. Environmental surface testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during prolonged isolation of an asymptomatic carrier. Infect Control Hosp Epidemiol. 2020;11:1328.CrossRef
61.
go back to reference Tan L, Ma B, Lai X, Han L, Cao P, Zhang J, et al. Air and surface contamination by SARS-CoV-2 virus in a tertiary hospital in Wuhan. China Int J Infect Dis Canada. 2020;99:3–7.CrossRef Tan L, Ma B, Lai X, Han L, Cao P, Zhang J, et al. Air and surface contamination by SARS-CoV-2 virus in a tertiary hospital in Wuhan. China Int J Infect Dis Canada. 2020;99:3–7.CrossRef
62.
go back to reference Wang Y, Qiao F, Zhou F, Yuan Y. Surface distribution of severe acute respiratory syndrome coronavirus 2 in Leishenshan Hospital in China. Indoor Built Environ. 2020;0:1–9. Wang Y, Qiao F, Zhou F, Yuan Y. Surface distribution of severe acute respiratory syndrome coronavirus 2 in Leishenshan Hospital in China. Indoor Built Environ. 2020;0:1–9.
64.
go back to reference Wei L, Lin J, Duan X, Huang W, Lu X, Zhou J, et al. Asymptomatic COVID-19 Patients can contaminate their surroundings: an environment sampling study. Appl Env Sci. 2020;5:e00442–20. Wei L, Lin J, Duan X, Huang W, Lu X, Zhou J, et al. Asymptomatic COVID-19 Patients can contaminate their surroundings: an environment sampling study. Appl Env Sci. 2020;5:e00442–20.
66.
go back to reference Yamagishi T, Ohnishi M, Matsunaga N, Kakimoto K, Kamiya H, Okamoto K, et al. Environmental sampling for severe acute respiratory syndrome coronavirus 2 during COVID-19 outbreak in the Diamond Princess cruise ship. J Infect Dis. 2020;222:1098.PubMedCrossRef Yamagishi T, Ohnishi M, Matsunaga N, Kakimoto K, Kamiya H, Okamoto K, et al. Environmental sampling for severe acute respiratory syndrome coronavirus 2 during COVID-19 outbreak in the Diamond Princess cruise ship. J Infect Dis. 2020;222:1098.PubMedCrossRef
67.
70.
go back to reference Ikonen N, Savolainen-Kopra C, Enstone JE, Kulmala I, Pasanen P, Salmela A, et al. Deposition of respiratory virus pathogens on frequently touched surfaces at airports. BMC Infect Dis BMC Infectious Diseases. 2018;18:1–7. Ikonen N, Savolainen-Kopra C, Enstone JE, Kulmala I, Pasanen P, Salmela A, et al. Deposition of respiratory virus pathogens on frequently touched surfaces at airports. BMC Infect Dis BMC Infectious Diseases. 2018;18:1–7.
71.
go back to reference Dowell SF, Simmerman JM, Erdman DD, Wu J-SJ, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis. 2004;39:652–7.PubMedCrossRef Dowell SF, Simmerman JM, Erdman DD, Wu J-SJ, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis. 2004;39:652–7.PubMedCrossRef
72.
go back to reference McDaniel MA, Whetzel DL, Schmidt FL, Maurer SD. The validity of employment interviews: a comprehensive review and meta-analysis. J Appl Psychol. 1994;79:599–616.CrossRef McDaniel MA, Whetzel DL, Schmidt FL, Maurer SD. The validity of employment interviews: a comprehensive review and meta-analysis. J Appl Psychol. 1994;79:599–616.CrossRef
73.
go back to reference Mittal R, Ni R, Seo JH. The flow physics of COVID-19. J Fluid Mech. 2020;894:1–14. Mittal R, Ni R, Seo JH. The flow physics of COVID-19. J Fluid Mech. 2020;894:1–14.
75.
go back to reference Kolinski JM, Schneider TM. Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces. Phys Rev. 2021;E103:033109. Kolinski JM, Schneider TM. Superspreading events suggest aerosol transmission of SARS-CoV-2 by accumulation in enclosed spaces. Phys Rev. 2021;E103:033109.
76.
go back to reference Rusin P, Maxwell S, Gerba C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J Appl Microbiol. 2002;93:585–92.PubMedCrossRef Rusin P, Maxwell S, Gerba C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J Appl Microbiol. 2002;93:585–92.PubMedCrossRef
77.
go back to reference Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, et al. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe. Elsevier; 2020;1:e10. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, et al. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe. Elsevier; 2020;1:e10.
78.
go back to reference Kratzel A, Steiner S, Todt D, Brueggemann Y, Steinmann J, Steinmann E, et al. Temperature-dependent surface stability of SARS-CoV-2. J Infect. 2020;81:452–82.PubMedPubMedCentralCrossRef Kratzel A, Steiner S, Todt D, Brueggemann Y, Steinmann J, Steinmann E, et al. Temperature-dependent surface stability of SARS-CoV-2. J Infect. 2020;81:452–82.PubMedPubMedCentralCrossRef
79.
go back to reference Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;194:1–6.PubMedCrossRef Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;194:1–6.PubMedCrossRef
80.
go back to reference Conficoni D, Losasso C, Cortini E, Di Cesare A, Cibin V, Giaccone V, et al. Resistance to biocides in Listeria monocytogenes collected in meat-processing environments. Front Microbiol. 2016;7:1–9.CrossRef Conficoni D, Losasso C, Cortini E, Di Cesare A, Cibin V, Giaccone V, et al. Resistance to biocides in Listeria monocytogenes collected in meat-processing environments. Front Microbiol. 2016;7:1–9.CrossRef
81.
go back to reference Marzoli F, Turchi B, Pedonese F, Torracca B, Bertelloni F, Cilia G, et al. Coagulase negative staphylococci from ovine bulk-tank milk: Effects of the exposure to sub-inhibitory concentrations of disinfectants for teat-dipping. Comp Immunol Microbiol Infect Dis. 2021;76:101656. Marzoli F, Turchi B, Pedonese F, Torracca B, Bertelloni F, Cilia G, et al. Coagulase negative staphylococci from ovine bulk-tank milk: Effects of the exposure to sub-inhibitory concentrations of disinfectants for teat-dipping. Comp Immunol Microbiol Infect Dis. 2021;76:101656.
Metadata
Title
Prevalence of SARS-CoV-2 RNA on inanimate surfaces: a systematic review and meta-analysis
Authors
Simone Belluco
Marzia Mancin
Filippo Marzoli
Alessio Bortolami
Eva Mazzetto
Alessandra Pezzuto
Michela Favretti
Calogero Terregino
Francesco Bonfante
Roberto Piro
Publication date
01-07-2021
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 7/2021
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-021-00784-y

Other articles of this Issue 7/2021

European Journal of Epidemiology 7/2021 Go to the issue