Skip to main content
Top
Published in: European Journal of Epidemiology 1/2018

01-01-2018 | ESSAY

Case–control matching: effects, misconceptions, and recommendations

Authors: Mohammad Ali Mansournia, Nicholas Patrick Jewell, Sander Greenland

Published in: European Journal of Epidemiology | Issue 1/2018

Login to get access

Abstract

Misconceptions about the impact of case–control matching remain common. We discuss several subtle problems associated with matched case–control studies that do not arise or are minor in matched cohort studies: (1) matching, even for non-confounders, can create selection bias; (2) matching distorts dose–response relations between matching variables and the outcome; (3) unbiased estimation requires accounting for the actual matching protocol as well as for any residual confounding effects; (4) for efficiency, identically matched groups should be collapsed; (5) matching may harm precision and power; (6) matched analyses may suffer from sparse-data bias, even when using basic sparse-data methods. These problems support advice to limit case–control matching to a few strong well-measured confounders, which would devolve to no matching if no such confounders are measured. On the positive side, odds ratio modification by matched variables can be assessed in matched case–control studies without further data, and when one knows either the distribution of the matching factors or their relation to the outcome in the source population, one can estimate and study patterns in absolute rates. Throughout, we emphasize distinctions from the more intuitive impacts of cohort matching.
Literature
1.
go back to reference Rothman KJ, Greenland S, Lash TL. Design strategies to improve study accuracy. In: Rothman KJ, Greenland S, Lash TL, eds. Modern Epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008. p. 168–82. Rothman KJ, Greenland S, Lash TL. Design strategies to improve study accuracy. In: Rothman KJ, Greenland S, Lash TL, eds. Modern Epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008. p. 168–82.
2.
go back to reference Greenland S. Partial and marginal matching in case-control studies. In: Moolgavkar SH, Prentice RL, editors. Modern statistical methods in chronic disease epidemiology. New York: Wiley; 1986. p. 35–49. Greenland S. Partial and marginal matching in case-control studies. In: Moolgavkar SH, Prentice RL, editors. Modern statistical methods in chronic disease epidemiology. New York: Wiley; 1986. p. 35–49.
3.
go back to reference Rothman KJ, Greenland S, Lash TL. Case-control studies. In: Rothman KJ, Greenland S, Lash TL, eds. Modern Epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008. p. 111–27. Rothman KJ, Greenland S, Lash TL. Case-control studies. In: Rothman KJ, Greenland S, Lash TL, eds. Modern Epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008. p. 111–27.
4.
go back to reference Jewell NP. Statistics for epidemiology, chapter 5. Boca Raton: Chapman & Hall/CRC; 2004. Jewell NP. Statistics for epidemiology, chapter 5. Boca Raton: Chapman & Hall/CRC; 2004.
5.
go back to reference Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ, Greenland S, Lash T, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 183–209. Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ, Greenland S, Lash T, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 183–209.
6.
go back to reference Jewell NP. Statistics for epidemiology, chapter 8. Boca Raton: Chapman & Hall/CRC; 2004. Jewell NP. Statistics for epidemiology, chapter 8. Boca Raton: Chapman & Hall/CRC; 2004.
7.
go back to reference Greenland S, Mansournia MA. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness. Eur J Epidemiol. 2015;30:1101–10.CrossRefPubMed Greenland S, Mansournia MA. Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness. Eur J Epidemiol. 2015;30:1101–10.CrossRefPubMed
8.
go back to reference Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28:54–9.CrossRefPubMedPubMedCentral Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28:54–9.CrossRefPubMedPubMedCentral
9.
go back to reference Suzuki E, Tsuda T, Mitsuhashi T, Mansournia MA, Yamamoto E. Errors in causal inference: an organizational schema for systematic error and random error. Ann Epidemiol. 2016;26:788–93.CrossRefPubMed Suzuki E, Tsuda T, Mitsuhashi T, Mansournia MA, Yamamoto E. Errors in causal inference: an organizational schema for systematic error and random error. Ann Epidemiol. 2016;26:788–93.CrossRefPubMed
10.
go back to reference Mansournia MA, Etminan M, Danaei G, Kaufman JS, Collins G. Handling time varying confounding in observational research. BMJ 2017;359:j4587.CrossRefPubMed Mansournia MA, Etminan M, Danaei G, Kaufman JS, Collins G. Handling time varying confounding in observational research. BMJ 2017;359:j4587.CrossRefPubMed
11.
go back to reference Rothman KJ. Modern epidemiology, chapter 13. Boston: Little, Brown; 1986. Rothman KJ. Modern epidemiology, chapter 13. Boston: Little, Brown; 1986.
13.
go back to reference Gharibzadeh S, Mohammad K, Rahimiforoushani A, Amouzegar A, Mansournia MA. Standardization as a tool for causal inference in medical research. Arch Iran Med. 2016;19:666–70.PubMed Gharibzadeh S, Mohammad K, Rahimiforoushani A, Amouzegar A, Mansournia MA. Standardization as a tool for causal inference in medical research. Arch Iran Med. 2016;19:666–70.PubMed
14.
go back to reference Greenland S, Lash TL. Bias analysis. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 345–80. Greenland S, Lash TL. Bias analysis. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 345–80.
15.
go back to reference Hernán MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.CrossRefPubMed Hernán MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.CrossRefPubMed
16.
go back to reference Gail MH. Selection bias. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics. 2nd ed. Hoboken: John Wiley & Sons; 2005. p. 4869–70. Gail MH. Selection bias. In: Armitage P, Colton T, editors. Encyclopedia of biostatistics. 2nd ed. Hoboken: John Wiley & Sons; 2005. p. 4869–70.
18.
go back to reference Smith PG, Day NE. Matching and confounding in the design and analysis of epidemiological case-control studies. In: Blithell JF, Coppi R, editors. Perspectives in medical statistics. New York: Academic Press; 1981. Smith PG, Day NE. Matching and confounding in the design and analysis of epidemiological case-control studies. In: Blithell JF, Coppi R, editors. Perspectives in medical statistics. New York: Academic Press; 1981.
19.
go back to reference Kupper LL, Karon JM, Kleinbaum DG, Morgenstern H, Lewis DK. Matching in epidemiologic studies: validity and efficiency considerations. Biometrics. 1981;37:271–92.CrossRefPubMed Kupper LL, Karon JM, Kleinbaum DG, Morgenstern H, Lewis DK. Matching in epidemiologic studies: validity and efficiency considerations. Biometrics. 1981;37:271–92.CrossRefPubMed
20.
go back to reference Samuels ML. Matching and design efficiency in epidemiological studies. Biometrika. 1981;68:577–88.CrossRef Samuels ML. Matching and design efficiency in epidemiological studies. Biometrika. 1981;68:577–88.CrossRef
21.
go back to reference Thomas DC, Greenland S. The relative efficiencies of matched and independent sample designs for case-control studies. J Chronic Dis. 1983;36:685–97.CrossRefPubMed Thomas DC, Greenland S. The relative efficiencies of matched and independent sample designs for case-control studies. J Chronic Dis. 1983;36:685–97.CrossRefPubMed
22.
go back to reference Smith PG, Day NE. The design of case-control studies: the influence of confounding and interaction effects. Int J Epidemiol. 1984;13:356–65.CrossRefPubMed Smith PG, Day NE. The design of case-control studies: the influence of confounding and interaction effects. Int J Epidemiol. 1984;13:356–65.CrossRefPubMed
23.
go back to reference Thomas DC, Greenland S. The efficiency of matching in case-control studies of risk-factor interactions. J Chronic Dis. 1985;38:569–74.CrossRefPubMed Thomas DC, Greenland S. The efficiency of matching in case-control studies of risk-factor interactions. J Chronic Dis. 1985;38:569–74.CrossRefPubMed
24.
go back to reference Greenland S. Estimating variances of standardized estimators in case-control studies and sparse data. J Chronic Dis. 1986;39:473–7.CrossRefPubMed Greenland S. Estimating variances of standardized estimators in case-control studies and sparse data. J Chronic Dis. 1986;39:473–7.CrossRefPubMed
25.
go back to reference Greenland S, Rothman KJ. Introduction to stratified analysis. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 258–82. Greenland S, Rothman KJ. Introduction to stratified analysis. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 258–82.
26.
go back to reference Clayton D, Hills M. Statistical models in epidemiology, chapter 18. New York: Oxford University Press; 1993. Clayton D, Hills M. Statistical models in epidemiology, chapter 18. New York: Oxford University Press; 1993.
27.
go back to reference Greenland S. Re: Estimating relative risk functions in case-control studies using a nonparametric logistic regression. Am J Epidemiol. 1997;146:883–4.CrossRefPubMed Greenland S. Re: Estimating relative risk functions in case-control studies using a nonparametric logistic regression. Am J Epidemiol. 1997;146:883–4.CrossRefPubMed
28.
go back to reference Breslow NE, Lubin JH, Marek P, Langholz B. Multiplicative models and cohort analysis. J Am Stat Assoc. 1983;78:1–12.CrossRef Breslow NE, Lubin JH, Marek P, Langholz B. Multiplicative models and cohort analysis. J Am Stat Assoc. 1983;78:1–12.CrossRef
29.
go back to reference Greenland S. Introduction to regression modeling. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 418–55. Greenland S. Introduction to regression modeling. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 418–55.
30.
go back to reference Greenland S. Applications of stratified analysis methods. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 283–302. Greenland S. Applications of stratified analysis methods. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008. p. 283–302.
31.
go back to reference Jewell NP. Statistics for epidemiology, chapter 16. Boca Raton: Chapman & Hall/CRC; 2004. Jewell NP. Statistics for epidemiology, chapter 16. Boca Raton: Chapman & Hall/CRC; 2004.
32.
go back to reference Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression. Int Stat Rev. 1991;59:227–40.CrossRef Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression. Int Stat Rev. 1991;59:227–40.CrossRef
33.
go back to reference Brookmeyer R, Liang KY, Linet M. Matched case-control designs and overmatched analyses. Am J Epidemiol. 1986;124:693–701.CrossRefPubMed Brookmeyer R, Liang KY, Linet M. Matched case-control designs and overmatched analyses. Am J Epidemiol. 1986;124:693–701.CrossRefPubMed
34.
go back to reference Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–6.PubMed Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–6.PubMed
35.
go back to reference Didelez V, Kreiner S, Keiding N. On the use of graphical models for inference under outcome dependent sampling. Stat Sci. 2010;25:368–87.CrossRef Didelez V, Kreiner S, Keiding N. On the use of graphical models for inference under outcome dependent sampling. Stat Sci. 2010;25:368–87.CrossRef
36.
go back to reference Kalish LA. Matching on a non-risk factor in the design of case-control studies does not always result in an efficiency loss. Am J Epidemiol. 1986;123:551–4.CrossRefPubMed Kalish LA. Matching on a non-risk factor in the design of case-control studies does not always result in an efficiency loss. Am J Epidemiol. 1986;123:551–4.CrossRefPubMed
37.
go back to reference Mansournia MA, Altman DG. Inverse probability weighting. BMJ. 2016;15(352):i189.CrossRef Mansournia MA, Altman DG. Inverse probability weighting. BMJ. 2016;15(352):i189.CrossRef
38.
go back to reference Mansournia MA, Danaei G, Forouzanfar MH, Mahmoudi M, Jamali M, Mansournia N, Mohammad K. Effect of physical activity on functional performance and knee pain in patients with osteoarthritis: analysis with marginal structural models. Epidemiology. 2012;23:631–40.CrossRefPubMed Mansournia MA, Danaei G, Forouzanfar MH, Mahmoudi M, Jamali M, Mansournia N, Mohammad K. Effect of physical activity on functional performance and knee pain in patients with osteoarthritis: analysis with marginal structural models. Epidemiology. 2012;23:631–40.CrossRefPubMed
39.
go back to reference Szklo M, Nieto F. Epidemiology: beyond the basics, chapter 6. 3rd ed. Sudbury: Jones and Bartlett Publishers; 2014. Szklo M, Nieto F. Epidemiology: beyond the basics, chapter 6. 3rd ed. Sudbury: Jones and Bartlett Publishers; 2014.
40.
go back to reference Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. Stat Med. 1983;2:243–51.CrossRefPubMed Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. Stat Med. 1983;2:243–51.CrossRefPubMed
41.
go back to reference Greenland S, Maldonado G. The interpretation of multiplicative model parameters as standardized parameters. Stat Med. 1994;13:989–99.CrossRefPubMed Greenland S, Maldonado G. The interpretation of multiplicative model parameters as standardized parameters. Stat Med. 1994;13:989–99.CrossRefPubMed
42.
go back to reference Mohammad K, Hashemi Nazari SS, Mansournia N, Mansournia MA. Marginal versus conditional causal effects. J Biostat Epidemiol. 2015;1:121–8. Mohammad K, Hashemi Nazari SS, Mansournia N, Mansournia MA. Marginal versus conditional causal effects. J Biostat Epidemiol. 2015;1:121–8.
43.
go back to reference Greenland S. Dose-response and trend analysis: alternatives to category-indicator regression. Epidemiology. 1995;6:356–65.CrossRefPubMed Greenland S. Dose-response and trend analysis: alternatives to category-indicator regression. Epidemiology. 1995;6:356–65.CrossRefPubMed
44.
go back to reference Sjölander A, Greenland S. Ignoring the matching variables in cohort studies: when is it valid and why? Stat Med. 2013;32:4696–708.CrossRefPubMed Sjölander A, Greenland S. Ignoring the matching variables in cohort studies: when is it valid and why? Stat Med. 2013;32:4696–708.CrossRefPubMed
45.
go back to reference Greenland S, Morgenstern H. Matching and efficiency in cohort studies. Am J Epidemiol. 1990;131:151–9.CrossRefPubMed Greenland S, Morgenstern H. Matching and efficiency in cohort studies. Am J Epidemiol. 1990;131:151–9.CrossRefPubMed
46.
go back to reference Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70.CrossRefPubMed Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70.CrossRefPubMed
47.
go back to reference Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.CrossRef Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.CrossRef
48.
go back to reference Mansournia MA, Greenland S. The relation of collapsibility and confounding to faithfulness and stability. Epidemiology. 2015;26:466–72.CrossRefPubMed Mansournia MA, Greenland S. The relation of collapsibility and confounding to faithfulness and stability. Epidemiology. 2015;26:466–72.CrossRefPubMed
49.
go back to reference Greenland S, Pearl J. Adjustments and their consequences: collapsibility analysis using graphical models. Int Stat Rev. 2011;79:401–26.CrossRef Greenland S, Pearl J. Adjustments and their consequences: collapsibility analysis using graphical models. Int Stat Rev. 2011;79:401–26.CrossRef
50.
go back to reference Pang M, Kaufman JS, Platt RW. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Methods Med Res. 2016;25:1925–37.CrossRefPubMed Pang M, Kaufman JS, Platt RW. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Methods Med Res. 2016;25:1925–37.CrossRefPubMed
51.
go back to reference Lombard HL, Doering CR. Cancer studies in Massachusetts. 2. Habits, characteristics and environment of individuals with and without cancer. N Engl J Med. 1928;198:481–7.CrossRef Lombard HL, Doering CR. Cancer studies in Massachusetts. 2. Habits, characteristics and environment of individuals with and without cancer. N Engl J Med. 1928;198:481–7.CrossRef
52.
go back to reference Lane-Claypon JE. A further report on cancer of the breast. London: Her Majesty’s Stationery Office; 1926. Lane-Claypon JE. A further report on cancer of the breast. London: Her Majesty’s Stationery Office; 1926.
54.
go back to reference Greenland S, Schwartzbaum JA, Finkle WD. Problems from small samples and sparse data in conditional logistic regression analysis. Am J Epidemiol. 2000;151:531–9.CrossRefPubMed Greenland S, Schwartzbaum JA, Finkle WD. Problems from small samples and sparse data in conditional logistic regression analysis. Am J Epidemiol. 2000;151:531–9.CrossRefPubMed
55.
go back to reference Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics. 2000;1:113–22.CrossRefPubMed Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics. 2000;1:113–22.CrossRefPubMed
56.
go back to reference Jewell NP. Small-sample bias of point estimators of the odds ratio from matched sets. Biometrics. 1984;40:421–35.CrossRefPubMed Jewell NP. Small-sample bias of point estimators of the odds ratio from matched sets. Biometrics. 1984;40:421–35.CrossRefPubMed
57.
go back to reference Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 2016;27(352):i1981.CrossRef Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 2016;27(352):i1981.CrossRef
58.
go back to reference Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Stat Med. 2015;34:3133–43.CrossRefPubMed Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Stat Med. 2015;34:3133–43.CrossRefPubMed
59.
go back to reference Mansournia MA, Geroldinger A, Greenland S, Heinze G. Separation in logistic regression–causes, consequences, and control. Am J Epidemiol. 2017. doi:10.1093/aje/kwx299. Mansournia MA, Geroldinger A, Greenland S, Heinze G. Separation in logistic regression–causes, consequences, and control. Am J Epidemiol. 2017. doi:10.​1093/​aje/​kwx299.
60.
go back to reference Shrier I. Re: the design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med. 2008;27:2740–1.CrossRefPubMed Shrier I. Re: the design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med. 2008;27:2740–1.CrossRefPubMed
63.
go back to reference Mansson R, Joffe MM, Sun W, Hennessy S. On the estimation and use of propensity scores in case-control and case-cohort studies. Am J Epidemiol. 2007;166:332–9.CrossRefPubMed Mansson R, Joffe MM, Sun W, Hennessy S. On the estimation and use of propensity scores in case-control and case-cohort studies. Am J Epidemiol. 2007;166:332–9.CrossRefPubMed
64.
go back to reference Austin H, Flanders WD, Rothman KJ. Bias arising in case-control studies from selection of controls from overlapping groups. Int J Epidemiol. 1989;18:713–6.CrossRefPubMed Austin H, Flanders WD, Rothman KJ. Bias arising in case-control studies from selection of controls from overlapping groups. Int J Epidemiol. 1989;18:713–6.CrossRefPubMed
Metadata
Title
Case–control matching: effects, misconceptions, and recommendations
Authors
Mohammad Ali Mansournia
Nicholas Patrick Jewell
Sander Greenland
Publication date
01-01-2018
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 1/2018
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-017-0325-0

Other articles of this Issue 1/2018

European Journal of Epidemiology 1/2018 Go to the issue