Skip to main content
Top
Published in: Investigational New Drugs 3/2018

01-06-2018 | PRECLINICAL STUDIES

Cyclodextrin polymers as nanocarriers for sorafenib

Authors: Valentina Giglio, Maurizio Viale, Vittorio Bertone, Irena Maric, Rita Vaccarone, Graziella Vecchio

Published in: Investigational New Drugs | Issue 3/2018

Login to get access

Summary

Polymeric nanoparticles based on cyclodextrins are currently undergoing clinical trials as new promising nanotherapeutics. In light of this interest, we investigated cyclodextrin cross-linked polymers with different lengths as carriers for the poorly water-soluble drug sorafenib. Both polymers significantly enhanced sorafenib solubility, with shorter polymers showing the most effective solubilizing effect. Inclusion complexes between sorafenib and the investigated polymers exhibited an antiproliferative effect in tumor cells similar to that of free sorafenib. Polymer/Sorafenib complexes also showed lower in vivo tissue toxicity than with free sorafenib in all organs. Our results suggest that the inclusion of sorafenib in polymers represents a successful strategy for a new formulation of this drug.
Literature
1.
go back to reference Popielec A, Loftsson T (2017) Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm 531:532–542 Popielec A, Loftsson T (2017) Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm 531:532–542
2.
go back to reference Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996 Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996
3.
go back to reference Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657CrossRefPubMed Oliveri V, Vecchio G (2016) Cyclodextrins as protective agents of protein aggregation: an overview. Chem Asian J 11:1648–1657CrossRefPubMed
4.
go back to reference Heidel JD, Schluep T (2012) Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J Drug Deliv ID 262731:17 Heidel JD, Schluep T (2012) Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J Drug Deliv ID 262731:17
5.
go back to reference Arima H, Hayashi Y, Higashi T, Motoyama K (2015) Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 12:1425–1441CrossRefPubMed Arima H, Hayashi Y, Higashi T, Motoyama K (2015) Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 12:1425–1441CrossRefPubMed
6.
go back to reference Giglio V, Oliveri V, Viale M, Gangemi R, Natile G, Intini FP, Vecchio G (2015) Folate–cyclodextrin conjugates as carriers of the platinum(IV) complex LA-12. ChemPlusChem 80:536–543 Giglio V, Oliveri V, Viale M, Gangemi R, Natile G, Intini FP, Vecchio G (2015) Folate–cyclodextrin conjugates as carriers of the platinum(IV) complex LA-12. ChemPlusChem 80:536–543
7.
go back to reference Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781CrossRefPubMed Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781CrossRefPubMed
8.
go back to reference Lakkakula JR, Maçedo Krause RW (2014) A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 9:877–894CrossRefPubMed Lakkakula JR, Maçedo Krause RW (2014) A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine 9:877–894CrossRefPubMed
9.
go back to reference Van de Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175CrossRefPubMed Van de Manakker F, Vermonden T, Van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175CrossRefPubMed
10.
go back to reference Vulic K, Shoichet MS (2014) Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules 15:3867–3880 Vulic K, Shoichet MS (2014) Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules 15:3867–3880
11.
go back to reference Jones RK, Caldwell JE, Brull SJ, Soto RG (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824CrossRefPubMed Jones RK, Caldwell JE, Brull SJ, Soto RG (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824CrossRefPubMed
14.
go back to reference Avnesh S, Thakor MD, Sanjiv S, Gambhir MD (2013) Nanooncology: the future of cancer diagnosis and therapy. Cancer J Clin 63:395–418CrossRef Avnesh S, Thakor MD, Sanjiv S, Gambhir MD (2013) Nanooncology: the future of cancer diagnosis and therapy. Cancer J Clin 63:395–418CrossRef
15.
go back to reference Fülöp Z, Kurkov SV, Nielsen TT, Larsen KL, Loftsson T (2012) Self-assembly of cyclodextrins: formation of cyclodextrin polymer-based nanoparticles. J Drug Deliv Sci Technol 22:215–222 Fülöp Z, Kurkov SV, Nielsen TT, Larsen KL, Loftsson T (2012) Self-assembly of cyclodextrins: formation of cyclodextrin polymer-based nanoparticles. J Drug Deliv Sci Technol 22:215–222
16.
go back to reference Oliveri V, Bellia F, Vecchio G (2017) Cyclodextrin nanoparticles bearing 8-hydroxyquinoline ligands as multifunctional biomaterials. Chem Eur J 23:442–4449CrossRef Oliveri V, Bellia F, Vecchio G (2017) Cyclodextrin nanoparticles bearing 8-hydroxyquinoline ligands as multifunctional biomaterials. Chem Eur J 23:442–4449CrossRef
17.
go back to reference Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579–601CrossRefPubMed Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:579–601CrossRefPubMed
18.
go back to reference Zhu W, Li Y, Liu L, Chen Y, Wang C, Xi F (2010) Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-Cyclodextrins with a stepwise delivery property. Biomacromolecules 11:3086–3092CrossRefPubMed Zhu W, Li Y, Liu L, Chen Y, Wang C, Xi F (2010) Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-Cyclodextrins with a stepwise delivery property. Biomacromolecules 11:3086–3092CrossRefPubMed
19.
go back to reference Oliveri V, Bellia F, Viale M, Maric I, Vecchio G (2017) Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym. 177:355–360 Oliveri V, Bellia F, Viale M, Maric I, Vecchio G (2017) Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym. 177:355–360
20.
go back to reference Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070CrossRefPubMedPubMedCentral Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070CrossRefPubMedPubMedCentral
21.
go back to reference Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J, Yen Y, Davis ME (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. PNAS 113:3850–3854CrossRefPubMedPubMedCentral Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J, Yen Y, Davis ME (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. PNAS 113:3850–3854CrossRefPubMedPubMedCentral
22.
go back to reference Hu C-MJ, Fang RH, Luk BT, Zhang L (2014) Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nano 6:65–75 Hu C-MJ, Fang RH, Luk BT, Zhang L (2014) Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nano 6:65–75
23.
go back to reference Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B 114:130–137 Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B 114:130–137
24.
go back to reference Giglio V, Sgarlata C, Vecchio G (2015) Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv 5:16664–16671CrossRef Giglio V, Sgarlata C, Vecchio G (2015) Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv 5:16664–16671CrossRef
25.
go back to reference Kanwar JR, Long BM, Kanwar RK (2011) The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem 18:2079–2085CrossRefPubMed Kanwar JR, Long BM, Kanwar RK (2011) The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem 18:2079–2085CrossRefPubMed
26.
go back to reference Anand R, Malanga M, Manet I, Manoli F, Tuza K, Aykac A, Ladaviere C, Fenyvesi E, Vargas-Berenguel A, Gref R, Monti S (2013) Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12:1841–1854CrossRefPubMed Anand R, Malanga M, Manet I, Manoli F, Tuza K, Aykac A, Ladaviere C, Fenyvesi E, Vargas-Berenguel A, Gref R, Monti S (2013) Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12:1841–1854CrossRefPubMed
27.
go back to reference Folch-Cano C, Yazdani-Pedram M, Olea-Azar C (2014) Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules 19:14066–14079CrossRefPubMed Folch-Cano C, Yazdani-Pedram M, Olea-Azar C (2014) Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules 19:14066–14079CrossRefPubMed
28.
go back to reference Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37–49CrossRefPubMed Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37–49CrossRefPubMed
29.
go back to reference Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London) 3:703–717 Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London) 3:703–717
30.
go back to reference Huillard O, Boissier E, Blanchet B, Thomas-Schoemann A, Cessot A, Boudou-Rouquette P, Durand JP, Coriat R, Giroux J, Alexandre J, Vidal M, Goldwasser F (2014) Drug safety evaluation of sorafenib for treatment of solid tumors: consequences for the risk assessment and management of cancer patients. Expert Opin Drug Saf 13:663–673CrossRefPubMed Huillard O, Boissier E, Blanchet B, Thomas-Schoemann A, Cessot A, Boudou-Rouquette P, Durand JP, Coriat R, Giroux J, Alexandre J, Vidal M, Goldwasser F (2014) Drug safety evaluation of sorafenib for treatment of solid tumors: consequences for the risk assessment and management of cancer patients. Expert Opin Drug Saf 13:663–673CrossRefPubMed
31.
go back to reference European Medicines Agency. Sorafenib—EPAR Scientific Discussion (2010) European Medicines Agency. Sorafenib—EPAR Scientific Discussion (2010)
32.
go back to reference Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS (2015) Assessment of the amorphous “solubility” of a Group of Diverse Drugs Using new Experimental and Theoretical Approaches. Mol. Pharmaceutics 12:484–−495 Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS (2015) Assessment of the amorphous “solubility” of a Group of Diverse Drugs Using new Experimental and Theoretical Approaches. Mol. Pharmaceutics 12:484–−495
33.
go back to reference Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F (2016) Improving oral bioavailability of Sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm 13:599–608CrossRefPubMed Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F (2016) Improving oral bioavailability of Sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm 13:599–608CrossRefPubMed
34.
go back to reference Bondì ML, Scala A, Sortino G, Amore E, Botto C, Azzolina A, Balasus D, Cervello M, Mazzaglia A (2015) Nanoassemblies based on supramolecular complexes of nonionic amphiphilic cyclodextrin and sorafenib as effective weapons to kill human HCC cells. Biomacromolecules 16:3784–3791 Bondì ML, Scala A, Sortino G, Amore E, Botto C, Azzolina A, Balasus D, Cervello M, Mazzaglia A (2015) Nanoassemblies based on supramolecular complexes of nonionic amphiphilic cyclodextrin and sorafenib as effective weapons to kill human HCC cells. Biomacromolecules 16:3784–3791
35.
go back to reference Zhang N, Zhang B, Gong X, Wang T, Liu Y, Yang S (2016) In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomedicine 11:2329–2343CrossRefPubMedPubMedCentral Zhang N, Zhang B, Gong X, Wang T, Liu Y, Yang S (2016) In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomedicine 11:2329–2343CrossRefPubMedPubMedCentral
36.
go back to reference Blanchet B, Billemont B, Barete S, Garrigue H, Cabanes L, Coriat R, Francès C, Knebelmann B, Goldwasser F (2010) Toxicity of sorafenib: clinical and molecular aspects. Expert Opin Drug Saf 9:275–287CrossRefPubMed Blanchet B, Billemont B, Barete S, Garrigue H, Cabanes L, Coriat R, Francès C, Knebelmann B, Goldwasser F (2010) Toxicity of sorafenib: clinical and molecular aspects. Expert Opin Drug Saf 9:275–287CrossRefPubMed
37.
go back to reference Yamaguchi T, Seki T, Miyasaka C, Inokuchi R, Kawamura R, Sakaguchi Y, Murata M, Matsuzaki K, Nakano Y, Uemura Y, Okazaki K (2015) Interstitial pneumonia induced by sorafenib in a patient with hepatocellular carcinoma: an autopsy case report. Oncol Lett 9:1633–1636CrossRefPubMedPubMedCentral Yamaguchi T, Seki T, Miyasaka C, Inokuchi R, Kawamura R, Sakaguchi Y, Murata M, Matsuzaki K, Nakano Y, Uemura Y, Okazaki K (2015) Interstitial pneumonia induced by sorafenib in a patient with hepatocellular carcinoma: an autopsy case report. Oncol Lett 9:1633–1636CrossRefPubMedPubMedCentral
39.
go back to reference Guo Y, Zhong T, Duan X-C, Zhang S, Yao X, Yin Y-F, Huang D, Ren W, Zhang Q, Zhang X (2017) Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix. Drug Deliv 24:270–277CrossRefPubMed Guo Y, Zhong T, Duan X-C, Zhang S, Yao X, Yin Y-F, Huang D, Ren W, Zhang Q, Zhang X (2017) Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix. Drug Deliv 24:270–277CrossRefPubMed
40.
go back to reference Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, Intini FP, Vecchio G (2016) Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 6:12461–12466CrossRef Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, Intini FP, Vecchio G (2016) Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 6:12461–12466CrossRef
41.
go back to reference Loftsson T, Hreinsdottir D, Masson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28CrossRefPubMed Loftsson T, Hreinsdottir D, Masson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28CrossRefPubMed
42.
go back to reference Oliveri V, Puglisi A, Viale M, Aiello C, Vecchio G, Clarke J, Milton J, Spencer J (2013) New cyclodextrin-bearing 8-hydroxyquinoline ligands as multifunctional molecules. Chem Eur J 19:13946–13955CrossRefPubMed Oliveri V, Puglisi A, Viale M, Aiello C, Vecchio G, Clarke J, Milton J, Spencer J (2013) New cyclodextrin-bearing 8-hydroxyquinoline ligands as multifunctional molecules. Chem Eur J 19:13946–13955CrossRefPubMed
43.
go back to reference Mariggiò MA, Cafaggi S, Ottone M, Parodi B, Vannozzi MO, Parodi A, Mandys V, Viale M (2004) Inhibition of cell growth: induction of apoptosis and mechanism of action of the novel platinum compound cis-diaminechloro-[2-(diethylamino) ethyl 4- amino-benzoate, N4]-chloride platinum (II) monohydrochloride monohydrate. Invest New Drugs 22:3–16 Mariggiò MA, Cafaggi S, Ottone M, Parodi B, Vannozzi MO, Parodi A, Mandys V, Viale M (2004) Inhibition of cell growth: induction of apoptosis and mechanism of action of the novel platinum compound cis-diaminechloro-[2-(diethylamino) ethyl 4- amino-benzoate, N4]-chloride platinum (II) monohydrochloride monohydrate. Invest New Drugs 22:3–16
44.
go back to reference Layre AM, Gosselet NM, Renard E, Sebille B, Amiel C (2003) Comparison of the complexation of cosmetic and pharmaceutical compounds with β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and water-soluble-β-cyclodextrin-co-epichlorohydrin polymers. J. Inclusion Phenomen Macrocyclic Chem 43:311–317CrossRef Layre AM, Gosselet NM, Renard E, Sebille B, Amiel C (2003) Comparison of the complexation of cosmetic and pharmaceutical compounds with β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin and water-soluble-β-cyclodextrin-co-epichlorohydrin polymers. J. Inclusion Phenomen Macrocyclic Chem 43:311–317CrossRef
45.
go back to reference Martin R, Sánchez I, Cao R, Rieumont J (2006) Solubility and kinetic release studies of naproxen and ibuprofen in soluble Epichlorohydrin-β-cyclodextrin polymer. Supramol Chem 18:627–631CrossRef Martin R, Sánchez I, Cao R, Rieumont J (2006) Solubility and kinetic release studies of naproxen and ibuprofen in soluble Epichlorohydrin-β-cyclodextrin polymer. Supramol Chem 18:627–631CrossRef
46.
go back to reference Fülöp Z, Nielsen TT, Larsen KL, Loftsson T (2013) Dextran-based cyclodextrin polymers: their solubilizing effect and self-association. Carbohydr Polym 97:635–642CrossRefPubMed Fülöp Z, Nielsen TT, Larsen KL, Loftsson T (2013) Dextran-based cyclodextrin polymers: their solubilizing effect and self-association. Carbohydr Polym 97:635–642CrossRefPubMed
47.
go back to reference Hashemi F, Tamaddon AM, Yousefi GH, Farvadi F (2012) Effect of pH on Solubilisation of Practically Insoluble Sorafenib by Classic and Stealth Polyamidoamine (PAMAM) Dendrimers and β–cyclodextrin. Proc NAP 1:02NNBM06 Hashemi F, Tamaddon AM, Yousefi GH, Farvadi F (2012) Effect of pH on Solubilisation of Practically Insoluble Sorafenib by Classic and Stealth Polyamidoamine (PAMAM) Dendrimers and β–cyclodextrin. Proc NAP 1:02NNBM06
48.
go back to reference Haxton KJ, Burt HM (2009) Polymeric drug delivery of platinum based anticancer agents. J Pharm Sci 98:2299–2316CrossRefPubMed Haxton KJ, Burt HM (2009) Polymeric drug delivery of platinum based anticancer agents. J Pharm Sci 98:2299–2316CrossRefPubMed
49.
go back to reference Viale M, Rossi M, Russo E, Cilli M, Aprile A, Profumo A, Santi P, Fenoglio C, Cafaggi S, Rocco M (2015) Fibrin gels loaded with cisplatin and cisplatin-hyaluronate complexes tested in a subcutaneous human melanoma model. Invest New Drugs 33:1151–1161 Viale M, Rossi M, Russo E, Cilli M, Aprile A, Profumo A, Santi P, Fenoglio C, Cafaggi S, Rocco M (2015) Fibrin gels loaded with cisplatin and cisplatin-hyaluronate complexes tested in a subcutaneous human melanoma model. Invest New Drugs 33:1151–1161
Metadata
Title
Cyclodextrin polymers as nanocarriers for sorafenib
Authors
Valentina Giglio
Maurizio Viale
Vittorio Bertone
Irena Maric
Rita Vaccarone
Graziella Vecchio
Publication date
01-06-2018
Publisher
Springer US
Published in
Investigational New Drugs / Issue 3/2018
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-017-0538-9

Other articles of this Issue 3/2018

Investigational New Drugs 3/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine