Skip to main content
Top
Published in: Investigational New Drugs 2/2018

01-04-2018 | PRECLINICAL STUDIES

4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma

Authors: Arpita De, Blake A. Jacobson, Mark S. Peterson, Joe Jay-Dixon, Marian G. Kratzke, Ahad A. Sadiq, Manish R. Patel, Robert A. Kratzke

Published in: Investigational New Drugs | Issue 2/2018

Login to get access

Summary

Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E–binding protein 1 (4E–BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345(6275):544–547CrossRefPubMed Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345(6275):544–547CrossRefPubMed
2.
go back to reference De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23(18):3189–3199CrossRefPubMed De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23(18):3189–3199CrossRefPubMed
3.
go back to reference Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826CrossRefPubMed Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826CrossRefPubMed
4.
go back to reference Pelletier J, Graff J, Ruggero D, Sonenberg N (2015) Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 75(2):250–263CrossRefPubMedPubMedCentral Pelletier J, Graff J, Ruggero D, Sonenberg N (2015) Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 75(2):250–263CrossRefPubMedPubMedCentral
5.
go back to reference Graff JR, Zimmer SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20(3):265–273CrossRefPubMed Graff JR, Zimmer SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20(3):265–273CrossRefPubMed
6.
go back to reference Thumma SC, Kratzke RA (2007) Translational control: a target for cancer therapy. Cancer Lett 258(1):1–8CrossRefPubMed Thumma SC, Kratzke RA (2007) Translational control: a target for cancer therapy. Cancer Lett 258(1):1–8CrossRefPubMed
7.
go back to reference Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18(15):2507–2517CrossRefPubMed Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18(15):2507–2517CrossRefPubMed
8.
go back to reference Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A (1995) The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 64(1):27–31CrossRefPubMed Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A (1995) The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 64(1):27–31CrossRefPubMed
9.
go back to reference Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL (2000) Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 82(1):161–166CrossRefPubMed Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL (2000) Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 82(1):161–166CrossRefPubMed
10.
go back to reference Nathan CO, Franklin S, Abreo FW, Nassar R, de Benedetti A, Williams J et al (1999) Expression of eIF4E during head and neck tumorigenesis: possible role in angiogenesis. Laryngoscope 109(8):1253–1258CrossRefPubMed Nathan CO, Franklin S, Abreo FW, Nassar R, de Benedetti A, Williams J et al (1999) Expression of eIF4E during head and neck tumorigenesis: possible role in angiogenesis. Laryngoscope 109(8):1253–1258CrossRefPubMed
11.
go back to reference Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266CrossRefPubMed Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266CrossRefPubMed
12.
go back to reference Bitterman PB, Polunovsky VA (2015) eIF4E-mediated translational control of cancer incidence. Biochim Biophys Acta 1849(7):774–780CrossRefPubMed Bitterman PB, Polunovsky VA (2015) eIF4E-mediated translational control of cancer incidence. Biochim Biophys Acta 1849(7):774–780CrossRefPubMed
13.
go back to reference Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3(6):707–716CrossRefPubMed Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3(6):707–716CrossRefPubMed
14.
go back to reference Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128(2):257–267CrossRefPubMed Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128(2):257–267CrossRefPubMed
15.
go back to reference Yi T, Kabha E, Papadopoulos E, Wagner G (2014) 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget 5(15):6028–6037CrossRefPubMedPubMedCentral Yi T, Kabha E, Papadopoulos E, Wagner G (2014) 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget 5(15):6028–6037CrossRefPubMedPubMedCentral
16.
go back to reference Wang H, Huang F, Wang J, Wang P, Lv W, Hong L et al (2015) The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Cell Cycle 14(2):232–242CrossRefPubMedPubMedCentral Wang H, Huang F, Wang J, Wang P, Lv W, Hong L et al (2015) The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Cell Cycle 14(2):232–242CrossRefPubMedPubMedCentral
17.
go back to reference Willimott S, Beck D, Ahearne MJ, Adams VC, Wagner SD (2013) Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin Cancer Res 19(12):3212–3223CrossRefPubMed Willimott S, Beck D, Ahearne MJ, Adams VC, Wagner SD (2013) Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin Cancer Res 19(12):3212–3223CrossRefPubMed
18.
go back to reference Descamps G, Gomez-Bougie P, Tamburini J, Green A, Bouscary D, Maiga S et al (2012) The cap-translation inhibitor 4EGI-1 induces apoptosis in multiple myeloma through Noxa induction. Br J Cancer 106(10):1660–1667CrossRefPubMedPubMedCentral Descamps G, Gomez-Bougie P, Tamburini J, Green A, Bouscary D, Maiga S et al (2012) The cap-translation inhibitor 4EGI-1 induces apoptosis in multiple myeloma through Noxa induction. Br J Cancer 106(10):1660–1667CrossRefPubMedPubMedCentral
19.
go back to reference Yang X, Dong QF, Li LW, Huo JL, Li PQ, Fei Z et al (2015) The cap-translation inhibitor 4EGI-1 induces mitochondrial dysfunction via regulation of mitochondrial dynamic proteins in human glioma U251 cells. Neurochem Int 90:98–106CrossRefPubMed Yang X, Dong QF, Li LW, Huo JL, Li PQ, Fei Z et al (2015) The cap-translation inhibitor 4EGI-1 induces mitochondrial dysfunction via regulation of mitochondrial dynamic proteins in human glioma U251 cells. Neurochem Int 90:98–106CrossRefPubMed
20.
go back to reference Wu M, Zhang C, Li XJ, Liu Q, Wanggou S (2016) Anti-cancer effect of cap-translation inhibitor 4EGI-1 in human Glioma U87 cells: involvement of mitochondrial dysfunction and ER stress. Cell Physiol Biochem 40(5):1013–1028CrossRefPubMed Wu M, Zhang C, Li XJ, Liu Q, Wanggou S (2016) Anti-cancer effect of cap-translation inhibitor 4EGI-1 in human Glioma U87 cells: involvement of mitochondrial dysfunction and ER stress. Cell Physiol Biochem 40(5):1013–1028CrossRefPubMed
21.
go back to reference Chen L, Aktas BH, Wang Y, He X, Sahoo R, Zhang N et al (2012) Tumor suppression by small molecule inhibitors of translation initiation. Oncotarget 3(8):869–881CrossRefPubMedPubMedCentral Chen L, Aktas BH, Wang Y, He X, Sahoo R, Zhang N et al (2012) Tumor suppression by small molecule inhibitors of translation initiation. Oncotarget 3(8):869–881CrossRefPubMedPubMedCentral
22.
go back to reference Schwarzer A, Holtmann H, Brugman M, Meyer J, Schauerte C, Zuber J et al (2015) Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia. Oncogene 34(27):3593–3604CrossRefPubMed Schwarzer A, Holtmann H, Brugman M, Meyer J, Schauerte C, Zuber J et al (2015) Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia. Oncogene 34(27):3593–3604CrossRefPubMed
23.
go back to reference Sato A, Ueno H, Takase A, Ando A, Sekine Y, Yano T (2016) Cytotoxicity induced by a redox-silent analog of Tocotrienol in human mesothelioma H2452 cell line via suppression of cap-dependent protein translation. Anticancer Res 36(4):1527–1533PubMed Sato A, Ueno H, Takase A, Ando A, Sekine Y, Yano T (2016) Cytotoxicity induced by a redox-silent analog of Tocotrienol in human mesothelioma H2452 cell line via suppression of cap-dependent protein translation. Anticancer Res 36(4):1527–1533PubMed
24.
go back to reference Whitson BA, Kratzke RA (2006) Molecular pathways in malignant pleural mesothelioma. Cancer Lett 239(2):183–189CrossRefPubMed Whitson BA, Kratzke RA (2006) Molecular pathways in malignant pleural mesothelioma. Cancer Lett 239(2):183–189CrossRefPubMed
25.
go back to reference Lee AY, Raz DJ, He B, Jablons DM (2007) Update on the molecular biology of malignant mesothelioma. Cancer 109(8):1454–1461CrossRefPubMed Lee AY, Raz DJ, He B, Jablons DM (2007) Update on the molecular biology of malignant mesothelioma. Cancer 109(8):1454–1461CrossRefPubMed
26.
go back to reference Carbone M, Rizzo P, Grimley PM, Procopio A, Mew DJY, Shridhar V, De Batolomeis A, Esposito V, Giuliano MT, Steinberg SM, Levine AS, Giordano A, Pass HI (1997) Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med 3(8):908–912CrossRefPubMed Carbone M, Rizzo P, Grimley PM, Procopio A, Mew DJY, Shridhar V, De Batolomeis A, Esposito V, Giuliano MT, Steinberg SM, Levine AS, Giordano A, Pass HI (1997) Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med 3(8):908–912CrossRefPubMed
27.
28.
go back to reference Antman KH, Pass HI, Recht A (1989) Benign and malignant mesothelioma. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principle and practices of oncology, 3rd edn. J.B.Lippincot, Philadelphia, pp 1399–1417 Antman KH, Pass HI, Recht A (1989) Benign and malignant mesothelioma. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principle and practices of oncology, 3rd edn. J.B.Lippincot, Philadelphia, pp 1399–1417
29.
go back to reference Jacobson BA, De A, Kratzke MG, Patel MR, Dixon JJ, Whitson BA, Sadiq AA, Bitterman PB, Polunovsky VA, Kratzke RA (2009) Activated 4E-BP1 represses tumourigenesis and IGF-I-mediated activation of the eIF4F complex in mesothelioma. Br J Cancer 101(3):424–431CrossRefPubMedPubMedCentral Jacobson BA, De A, Kratzke MG, Patel MR, Dixon JJ, Whitson BA, Sadiq AA, Bitterman PB, Polunovsky VA, Kratzke RA (2009) Activated 4E-BP1 represses tumourigenesis and IGF-I-mediated activation of the eIF4F complex in mesothelioma. Br J Cancer 101(3):424–431CrossRefPubMedPubMedCentral
30.
go back to reference Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S et al (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278(5):3015–3022CrossRefPubMed Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S et al (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278(5):3015–3022CrossRefPubMed
31.
go back to reference Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80CrossRefPubMedPubMedCentral Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80CrossRefPubMedPubMedCentral
32.
go back to reference Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix quality control and data analysis. Bioinformatics 21(18):3683–3685CrossRefPubMed Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix quality control and data analysis. Bioinformatics 21(18):3683–3685CrossRefPubMed
33.
go back to reference Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175CrossRefPubMedPubMedCentral Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175CrossRefPubMedPubMedCentral
35.
go back to reference Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121CrossRefPubMedPubMedCentral Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121CrossRefPubMedPubMedCentral
36.
go back to reference Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K et al (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67(14):6814–6824CrossRefPubMed Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K et al (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67(14):6814–6824CrossRefPubMed
37.
38.
go back to reference Li S, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Polunovsky VA et al (2004) Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 279(20):21312–21317CrossRefPubMed Li S, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Polunovsky VA et al (2004) Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 279(20):21312–21317CrossRefPubMed
39.
go back to reference Larsson O, Perlman DM, Fan D, Reilly CS, Peterson M, Dahlgren C et al (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res Larsson O, Perlman DM, Fan D, Reilly CS, Peterson M, Dahlgren C et al (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res
40.
go back to reference Greillier L, Baas P, Welch JJ, Hasan B, Passioukov A (2008) Biomarkers for malignant pleural mesothelioma: current status. Mol Diagn Ther 12(6):375–390CrossRefPubMed Greillier L, Baas P, Welch JJ, Hasan B, Passioukov A (2008) Biomarkers for malignant pleural mesothelioma: current status. Mol Diagn Ther 12(6):375–390CrossRefPubMed
41.
go back to reference Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5(6):553–563CrossRefPubMed Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5(6):553–563CrossRefPubMed
42.
go back to reference Sekiyama N, Arthanari H, Papadopoulos E, Rodriguez-Mias RA, Wagner G, Leger-Abraham M (2015) Molecular mechanism of the dual activity of 4EGI-1: dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A 112(30):E4036–E4045CrossRefPubMedPubMedCentral Sekiyama N, Arthanari H, Papadopoulos E, Rodriguez-Mias RA, Wagner G, Leger-Abraham M (2015) Molecular mechanism of the dual activity of 4EGI-1: dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A 112(30):E4036–E4045CrossRefPubMedPubMedCentral
43.
go back to reference Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21(14):2636–2644CrossRefPubMed Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21(14):2636–2644CrossRefPubMed
44.
go back to reference Kindler HL, van Meerbeeck JP (2002) The role of gemcitabine in the treatment of malignant mesothelioma. Semin Oncol 29(1):70–76CrossRefPubMed Kindler HL, van Meerbeeck JP (2002) The role of gemcitabine in the treatment of malignant mesothelioma. Semin Oncol 29(1):70–76CrossRefPubMed
45.
go back to reference Fukazawa T, Matsuoka J, Naomoto Y, Maeda Y, Durbin ML, Tanaka N (2008) Malignant pleural mesothelioma-targeted CREBBP/EP300 inhibitory protein 1 promoter system for gene therapy and virotherapy. Cancer Res 68(17):7120–7129CrossRefPubMed Fukazawa T, Matsuoka J, Naomoto Y, Maeda Y, Durbin ML, Tanaka N (2008) Malignant pleural mesothelioma-targeted CREBBP/EP300 inhibitory protein 1 promoter system for gene therapy and virotherapy. Cancer Res 68(17):7120–7129CrossRefPubMed
46.
go back to reference Zhang C, Li K, Wei L, Li Z, Yu P, Teng L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60(11):1249–1253CrossRefPubMedPubMedCentral Zhang C, Li K, Wei L, Li Z, Yu P, Teng L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60(11):1249–1253CrossRefPubMedPubMedCentral
47.
go back to reference Miura TA, Cook JL, Potter TA, Ryan S, Routes JM (2007) The interaction of adenovirus E1A with p300 family members modulates cellular gene expression to reduce tumorigenicity. J Cell Biochem 100(4):929–940CrossRefPubMed Miura TA, Cook JL, Potter TA, Ryan S, Routes JM (2007) The interaction of adenovirus E1A with p300 family members modulates cellular gene expression to reduce tumorigenicity. J Cell Biochem 100(4):929–940CrossRefPubMed
48.
go back to reference Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J et al (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci U S A 106(32):13481–13486CrossRefPubMedPubMedCentral Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J et al (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci U S A 106(32):13481–13486CrossRefPubMedPubMedCentral
49.
go back to reference Okino ST, Pookot D, Basak S, Dahiya R (2009) Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila) 2(3):251–256CrossRef Okino ST, Pookot D, Basak S, Dahiya R (2009) Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila) 2(3):251–256CrossRef
50.
go back to reference Ito T, Tsukumo S, Suzuki N, Motohashi H, Yamamoto M, Fujii-Kuriyama Y et al (2004) A constitutively active arylhydrocarbon receptor induces growth inhibition of jurkat T cells through changes in the expression of genes related to apoptosis and cell cycle arrest. J Biol Chem 279(24):25204–25210CrossRefPubMed Ito T, Tsukumo S, Suzuki N, Motohashi H, Yamamoto M, Fujii-Kuriyama Y et al (2004) A constitutively active arylhydrocarbon receptor induces growth inhibition of jurkat T cells through changes in the expression of genes related to apoptosis and cell cycle arrest. J Biol Chem 279(24):25204–25210CrossRefPubMed
51.
go back to reference Liang Y, Lin SY, Brunicardi FC, Goss J, Li K (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33(4):661–666CrossRefPubMed Liang Y, Lin SY, Brunicardi FC, Goss J, Li K (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33(4):661–666CrossRefPubMed
52.
go back to reference Ouyang G, Yao L, Ruan K, Song G, Mao Y, Bao S (2009) Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol Int Ouyang G, Yao L, Ruan K, Song G, Mao Y, Bao S (2009) Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol Int
53.
go back to reference Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486(2):95–102CrossRefPubMedPubMedCentral Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486(2):95–102CrossRefPubMedPubMedCentral
54.
go back to reference He H, Dai F, Yu L, She X, Zhao Y, Jiang J et al (2002) Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr 10(5–6):231–242CrossRefPubMed He H, Dai F, Yu L, She X, Zhao Y, Jiang J et al (2002) Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr 10(5–6):231–242CrossRefPubMed
55.
go back to reference Bani MR, Nicoletti MI, Alkharouf NW, Ghilardi C, Petersen D, Erba E et al (2004) Gene expression correlating with response to paclitaxel in ovarian carcinoma xenografts. Mol Cancer Ther 3(2):111–121PubMed Bani MR, Nicoletti MI, Alkharouf NW, Ghilardi C, Petersen D, Erba E et al (2004) Gene expression correlating with response to paclitaxel in ovarian carcinoma xenografts. Mol Cancer Ther 3(2):111–121PubMed
56.
go back to reference Asada K, Miyamoto K, Fukutomi T, Tsuda H, Yagi Y, Wakazono K et al (2003) Reduced expression of GNA11 and silencing of MCT1 in human breast cancers. Oncology 64(4):380–388CrossRefPubMed Asada K, Miyamoto K, Fukutomi T, Tsuda H, Yagi Y, Wakazono K et al (2003) Reduced expression of GNA11 and silencing of MCT1 in human breast cancers. Oncology 64(4):380–388CrossRefPubMed
57.
go back to reference Li DQ, Wang L, Fei F, Hou YF, Luo JM, Zeng R et al (2006) Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6(11):3352–3368CrossRefPubMed Li DQ, Wang L, Fei F, Hou YF, Luo JM, Zeng R et al (2006) Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6(11):3352–3368CrossRefPubMed
58.
go back to reference van't Veer MB, Brooijmans AM, Langerak AW, Verhaaf B, Goudswaard CS, Graveland WJ et al (2006) The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 91(1):56–63PubMed van't Veer MB, Brooijmans AM, Langerak AW, Verhaaf B, Goudswaard CS, Graveland WJ et al (2006) The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 91(1):56–63PubMed
59.
go back to reference Polunovsky VA, Bitterman PB (2006) The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol 3(1):10–17CrossRefPubMed Polunovsky VA, Bitterman PB (2006) The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol 3(1):10–17CrossRefPubMed
60.
go back to reference Bitterman PB, Polunovsky VA (2012) Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation. Mol Cancer Ther 11(5):1051–1061CrossRefPubMedPubMedCentral Bitterman PB, Polunovsky VA (2012) Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation. Mol Cancer Ther 11(5):1051–1061CrossRefPubMedPubMedCentral
61.
go back to reference Jacobson BA, Thumma SC, Jay-Dixon J, Patel MR, Dubear Kroening K, Kratzke MG et al (2013) Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide. PLoS One 8(11):e81669CrossRefPubMedPubMedCentral Jacobson BA, Thumma SC, Jay-Dixon J, Patel MR, Dubear Kroening K, Kratzke MG et al (2013) Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide. PLoS One 8(11):e81669CrossRefPubMedPubMedCentral
62.
go back to reference Jacobson BA, Alter MD, Kratzke MG, Frizelle SP, Zhang Y, Peterson MS et al (2006) Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo. Cancer Res 66(8):4256–4262CrossRefPubMed Jacobson BA, Alter MD, Kratzke MG, Frizelle SP, Zhang Y, Peterson MS et al (2006) Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo. Cancer Res 66(8):4256–4262CrossRefPubMed
63.
go back to reference von der Haar T, Gross JD, Wagner G, McCarthy JE (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11(6):503–511CrossRefPubMed von der Haar T, Gross JD, Wagner G, McCarthy JE (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11(6):503–511CrossRefPubMed
Metadata
Title
4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma
Authors
Arpita De
Blake A. Jacobson
Mark S. Peterson
Joe Jay-Dixon
Marian G. Kratzke
Ahad A. Sadiq
Manish R. Patel
Robert A. Kratzke
Publication date
01-04-2018
Publisher
Springer US
Published in
Investigational New Drugs / Issue 2/2018
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-017-0535-z

Other articles of this Issue 2/2018

Investigational New Drugs 2/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine