Skip to main content
Top
Published in: Investigational New Drugs 5/2017

Open Access 01-10-2017 | PRECLINICAL STUDIES

Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p53 activation and IGF1R downregulation

Authors: Magdalena Olbryt, Aleksandra Rusin, Izabela Fokt, Anna Habryka, Patrycja Tudrej, Sebastian Student, Aleksander Sochanik, Rafał Zieliński, Waldemar Priebe

Published in: Investigational New Drugs | Issue 5/2017

Login to get access

Summary

Anthracycline chemotherapeutics, e.g. doxorubicin and daunorubicin, are active against a broad spectrum of cancers. Their cytotoxicity is mainly attributed to DNA intercalation, interference with topoisomerase activity, and induction of double-stranded DNA breaks. Since modification of anthracyclines can profoundly affect their pharmacological properties we attempted to elucidate the mechanism of action, and identify possible molecular targets, of bis-anthracycline WP760 which previously demonstrated anti-melanoma activity at low nanomolar concentrations. We studied the effect of WP760 on several human melanoma cell lines derived from tumors in various development stages and having different genetic backgrounds. WP760 inhibited cell proliferation (IC50 = 1–99 nM), impaired clonogenic cell survival (100 nM), and inhibited spheroid growth (≥300 nM). WP760 did not induce double-stranded DNA breaks but strongly inhibited global transcription. Moreover, WP760 caused nucleolar stress and led to activation of the p53 pathway. PCR array analysis showed that WP760 suppressed transcription of ten genes (ABCC1, MTOR, IGF1R, EGFR, GRB2, PRKCA, PRKCE, HDAC4, TXNRD1, AKT1) associated with, inter alia, cytoprotective mechanisms initiated in cancer cells during chemotherapy. Furthermore, WP760 downregulated IGF1R and upregulated PLK2 expression in most of the tested melanoma cell lines. These results suggest that WP760 exerts anti-melanoma activity by targeting global transcription and activation of the p53 pathway and could become suitable as an effective therapeutic agent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jacques R (2005) Anthracyclines. In: Jan HM, Schellens HL, McLeod RN (eds) Cancer clinical pharmacology. Publisher OUP, Oxford, pp 117–131 Jacques R (2005) Anthracyclines. In: Jan HM, Schellens HL, McLeod RN (eds) Cancer clinical pharmacology. Publisher OUP, Oxford, pp 117–131
2.
go back to reference Ferreira ALA, Matsubara LS, Matsubara BB (2008) Anthracycline-induced cardiotoxicity. Cardiovasc Hematol Agents Med Chem 6:278–281CrossRef Ferreira ALA, Matsubara LS, Matsubara BB (2008) Anthracycline-induced cardiotoxicity. Cardiovasc Hematol Agents Med Chem 6:278–281CrossRef
3.
go back to reference Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350CrossRef Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350CrossRef
4.
go back to reference La Porta CA (2009) Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets 9:391–397CrossRef La Porta CA (2009) Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets 9:391–397CrossRef
5.
go back to reference Foletto MC, Haas SE (2014) Cutaneous melanoma: new advances in treatment. An Bras Dermatol 89:301–310CrossRef Foletto MC, Haas SE (2014) Cutaneous melanoma: new advances in treatment. An Bras Dermatol 89:301–310CrossRef
6.
go back to reference Zheng M, Priebe W, Walch ET, Roth KG, Han M, Tang CH, Lee S et al (2007) WP760, a melanoma selective drug. Cancer Chemother Pharmacol 60:625–633CrossRef Zheng M, Priebe W, Walch ET, Roth KG, Han M, Tang CH, Lee S et al (2007) WP760, a melanoma selective drug. Cancer Chemother Pharmacol 60:625–633CrossRef
7.
go back to reference Priebe W, Fokt I, Przewloka T, Chaires JB, Portugal J, Trent JO (2001) Exploiting anthracycline scaffold for designing DNA-targeting agents. In: Chaires JB, Waring MJ (eds) Methods in enzymology, Drug-nucleic acid interactions, vol 340. Academic Press, San Diego, pp 529–555 Priebe W, Fokt I, Przewloka T, Chaires JB, Portugal J, Trent JO (2001) Exploiting anthracycline scaffold for designing DNA-targeting agents. In: Chaires JB, Waring MJ (eds) Methods in enzymology, Drug-nucleic acid interactions, vol 340. Academic Press, San Diego, pp 529–555
9.
go back to reference Olbryt M, Habryka A, Student S, Jarząb M, Tyszkiewicz T, Lisowska KM (2014) Global gene expression profiling in three tumor cell lines subjected to experimental cycling and chronic hypoxia. PLoS One 9:e105104CrossRef Olbryt M, Habryka A, Student S, Jarząb M, Tyszkiewicz T, Lisowska KM (2014) Global gene expression profiling in three tumor cell lines subjected to experimental cycling and chronic hypoxia. PLoS One 9:e105104CrossRef
10.
go back to reference Gjerset RA, Bandyopadhyay K (2006) Regulation of p14ARF through subnuclear compartmentalization. Cell Cycle 5:686–690CrossRef Gjerset RA, Bandyopadhyay K (2006) Regulation of p14ARF through subnuclear compartmentalization. Cell Cycle 5:686–690CrossRef
11.
go back to reference Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533CrossRef Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533CrossRef
12.
go back to reference Kurki S, Peltonen K, Laiho M (2004) Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response. Cell Cycle 3:976–979CrossRef Kurki S, Peltonen K, Laiho M (2004) Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response. Cell Cycle 3:976–979CrossRef
13.
go back to reference Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F (2004) Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 24:3703–3711CrossRef Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F (2004) Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 24:3703–3711CrossRef
14.
go back to reference Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A et al (2015) Melanoma. Nat Rev Dis Primers 1:15003CrossRef Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A et al (2015) Melanoma. Nat Rev Dis Primers 1:15003CrossRef
15.
go back to reference Kwong LN (2014) Davies MA. Targeted therapy for melanoma: rational combinatorial approaches Oncogene 33:1–9PubMed Kwong LN (2014) Davies MA. Targeted therapy for melanoma: rational combinatorial approaches Oncogene 33:1–9PubMed
16.
go back to reference Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465–475CrossRef Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5:465–475CrossRef
17.
go back to reference Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285:12416–12425CrossRef Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285:12416–12425CrossRef
18.
go back to reference Bug M, Dobbelstein M (2011) Anthracyclines induce the accumulation of mutant p53 through E2F1-dependent and -independent mechanisms. Oncogene 30:3612–3624CrossRef Bug M, Dobbelstein M (2011) Anthracyclines induce the accumulation of mutant p53 through E2F1-dependent and -independent mechanisms. Oncogene 30:3612–3624CrossRef
19.
go back to reference Guano F, Pourquier P, Tinelli S, Binaschi M, Bigioni M, Animati F et al (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56:77–84CrossRef Guano F, Pourquier P, Tinelli S, Binaschi M, Bigioni M, Animati F et al (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56:77–84CrossRef
20.
go back to reference Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRef Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229CrossRef
21.
go back to reference Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y et al (2015) Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget 6:24075–24091PubMedPubMedCentral Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y et al (2015) Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget 6:24075–24091PubMedPubMedCentral
22.
go back to reference Teh JL, Shah R, Shin SS, Wen Y, Mehnert JM, Goydos J et al (2014) Metabotropic glutamate receptor 1 mediates melanocyte transformation via transactivation of insulin-like growth factor 1 receptor. Pigment Cell Melanoma Res 27:621–629CrossRef Teh JL, Shah R, Shin SS, Wen Y, Mehnert JM, Goydos J et al (2014) Metabotropic glutamate receptor 1 mediates melanocyte transformation via transactivation of insulin-like growth factor 1 receptor. Pigment Cell Melanoma Res 27:621–629CrossRef
23.
go back to reference Meier C, Hardtstock P, Joost S, Alla V, Pützer (2016) BM2p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res 76:197–205CrossRef Meier C, Hardtstock P, Joost S, Alla V, Pützer (2016) BM2p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Res 76:197–205CrossRef
24.
go back to reference Wang J, Ding N, Li Y, Cheng H, Wang D, Yang Q et al (2015) Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget 6:20636–20649PubMedPubMedCentral Wang J, Ding N, Li Y, Cheng H, Wang D, Yang Q et al (2015) Insulin-like growth factor binding protein 5 (IGFBP5) functions as a tumor suppressor in human melanoma cells. Oncotarget 6:20636–20649PubMedPubMedCentral
25.
go back to reference Wang J, Sinnberg T, Niessner H, Dölker R, Sauer B, Kempf WE, Meier F, Leslie N, Schittek B (2015) PTEN regulates IGF-1R-mediated therapy resistance in melanoma. Pigment Cell Melanoma Res 28:572–589CrossRef Wang J, Sinnberg T, Niessner H, Dölker R, Sauer B, Kempf WE, Meier F, Leslie N, Schittek B (2015) PTEN regulates IGF-1R-mediated therapy resistance in melanoma. Pigment Cell Melanoma Res 28:572–589CrossRef
26.
go back to reference Reuveni H, Flashner-Abramson E, Steiner L, Makedonski K, Song R, Shir A et al (2013) Therapeutic destruction of insulin receptor substrates for cancer treatment. Cancer Res 73:4383–4394CrossRef Reuveni H, Flashner-Abramson E, Steiner L, Makedonski K, Song R, Shir A et al (2013) Therapeutic destruction of insulin receptor substrates for cancer treatment. Cancer Res 73:4383–4394CrossRef
27.
go back to reference Flashner-Abramson E, Klein S, Mullin G, Shoshan E, Song R, Shir1 A, et al (2015) Targeting melanoma with NT157 by blocking Stat3 and IGF1R signaling. Oncogene 35:2675–2680CrossRef Flashner-Abramson E, Klein S, Mullin G, Shoshan E, Song R, Shir1 A, et al (2015) Targeting melanoma with NT157 by blocking Stat3 and IGF1R signaling. Oncogene 35:2675–2680CrossRef
28.
go back to reference Herkert B, Kauffmann A, Mollé S, Schnell C, Ferrat T, Voshol H et al (2016) Maximizing the efficacy of MAPK-targeted treatment in PTENLOF/BRAFMUT melanoma through PI3K and IGF1R inhibition. Cancer Res 76:390–402CrossRef Herkert B, Kauffmann A, Mollé S, Schnell C, Ferrat T, Voshol H et al (2016) Maximizing the efficacy of MAPK-targeted treatment in PTENLOF/BRAFMUT melanoma through PI3K and IGF1R inhibition. Cancer Res 76:390–402CrossRef
29.
go back to reference Haas NB, Quirt I, Hotte S, McWhirter E, Polintan R, Litwin S et al (2014) Phase II trial of vorinostat in advanced melanoma. Investig New Drugs 32:526–534CrossRef Haas NB, Quirt I, Hotte S, McWhirter E, Polintan R, Litwin S et al (2014) Phase II trial of vorinostat in advanced melanoma. Investig New Drugs 32:526–534CrossRef
30.
go back to reference Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J (2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3:1375–1385CrossRef Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J (2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3:1375–1385CrossRef
31.
go back to reference Hornig E, Heppt MV, Graf SA, Ruzicka T, Berking C (2016) Inhibition of histone deacetylases in melanoma-a perspective from bench to bedside. Exp Dermatol 25:831–838CrossRef Hornig E, Heppt MV, Graf SA, Ruzicka T, Berking C (2016) Inhibition of histone deacetylases in melanoma-a perspective from bench to bedside. Exp Dermatol 25:831–838CrossRef
32.
go back to reference Lu M, Miller P, Lu X (2014) Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Lett 588:2616–2621CrossRef Lu M, Miller P, Lu X (2014) Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Lett 588:2616–2621CrossRef
33.
go back to reference Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, Ścieglińska D, Rusin M (2015) Actinomycin D and nutlin-3a synergistically promote phosphorylation of p53 on serine 46 in cancer cell lines of different origin. Cell Signal 27:1677–1687CrossRef Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, Ścieglińska D, Rusin M (2015) Actinomycin D and nutlin-3a synergistically promote phosphorylation of p53 on serine 46 in cancer cell lines of different origin. Cell Signal 27:1677–1687CrossRef
34.
go back to reference Krayem M, Journe F, Wiedig M, Morandini R, Najem A, Salès F et al (2016) p53 reactivation by PRIMA-1(met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib. Eur J Cancer 55:98–110CrossRef Krayem M, Journe F, Wiedig M, Morandini R, Najem A, Salès F et al (2016) p53 reactivation by PRIMA-1(met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib. Eur J Cancer 55:98–110CrossRef
Metadata
Title
Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p53 activation and IGF1R downregulation
Authors
Magdalena Olbryt
Aleksandra Rusin
Izabela Fokt
Anna Habryka
Patrycja Tudrej
Sebastian Student
Aleksander Sochanik
Rafał Zieliński
Waldemar Priebe
Publication date
01-10-2017
Publisher
Springer US
Published in
Investigational New Drugs / Issue 5/2017
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-017-0465-9

Other articles of this Issue 5/2017

Investigational New Drugs 5/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine