Skip to main content
Top
Published in: Investigational New Drugs 6/2014

01-12-2014 | PRECLINICAL STUDIES

Improved replication efficiency of echovirus 5 after transfection of colon cancer cells using an authentic 5’ RNA genome end methodology

Authors: S. Israelsson, A. Sävneby, J-O. Ekström, N. Jonsson, K. Edman, A. M. Lindberg

Published in: Investigational New Drugs | Issue 6/2014

Login to get access

Summary

Oncolytic virotherapy is a promising novel form of cancer treatment, but the therapeutic efficiency needs improvement. A potential strategy to enhance the therapeutic effect of oncolytic viruses is to use infectious nucleic acid as therapeutic agent to initiate an oncolytic infection, without administrating infectious viral particles. Here we demonstrate improved viral replication activation efficiency when transfecting cells with 5’ end authentic in vitro transcribed enterovirus RNA as compared to genomic RNA with additional non-genomic 5’ nucleotides generated by conventional cloning methods. We used echovirus 5 (E5) as an oncolytoc model virus due to its ability to replicate in and completely destroy five out of six colon cancer cell lines and kill artificial colon cancer tumors (HT29 spheroids), as shown here. An E5 infectious cDNA clone including a hammerhead ribozyme sequence was used to generate in vitro transcripts with native 5’ genome ends. In HT29 cells, activation of virus replication is approximately 20-fold more efficient for virus genome transcripts with native 5’ genome ends compared to E5 transcripts generated from a standard cDNA clone. This replication advantage remains when viral progeny release starts by cellular lysis 22 h post transfection. Hence, a native 5’ genomic end improves infection activation efficacy of infectious nucleic acid, potentially enhancing its therapeutic effect when used for cancer treatment. The clone design with a hammerhead ribozyme is likely to be applicable to a variety of oncolytic positive sense RNA viruses for the purpose of improving the efficacy of oncolytic virotherapy.
Literature
5.
go back to reference Ochiai H, Campbell SA, Archer GE, Chewning TA, Dragunsky E, Ivanov A, Gromeier M, Sampson JH (2006) Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res 12:1349–1354. doi:10.1158/1078-0432.CCR-05-1595 CrossRefPubMed Ochiai H, Campbell SA, Archer GE, Chewning TA, Dragunsky E, Ivanov A, Gromeier M, Sampson JH (2006) Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res 12:1349–1354. doi:10.​1158/​1078-0432.​CCR-05-1595 CrossRefPubMed
6.
go back to reference Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko AJ, Yang J, Watkins DN, Rudin CM, Hallenbeck PL (2007) Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst 99:1623–1633CrossRefPubMed Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko AJ, Yang J, Watkins DN, Rudin CM, Hallenbeck PL (2007) Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst 99:1623–1633CrossRefPubMed
7.
go back to reference Rudin CM, Poirier JT, Senzer NN, Stephenson J Jr, Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL (2011) Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res 17:888–895. doi:10.1158/1078-0432.CCR-10-1706 CrossRefPubMed Rudin CM, Poirier JT, Senzer NN, Stephenson J Jr, Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL (2011) Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res 17:888–895. doi:10.​1158/​1078-0432.​CCR-10-1706 CrossRefPubMed
8.
go back to reference Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 10:53–60CrossRefPubMed Shafren DR, Au GG, Nguyen T, Newcombe NG, Haley ES, Beagley L, Johansson ES, Hersey P, Barry RD (2004) Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clin Cancer Res 10:53–60CrossRefPubMed
10.
go back to reference Domingo E, Martin V, Perales C, Escarmis C (2008) Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323:3–32PubMed Domingo E, Martin V, Perales C, Escarmis C (2008) Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323:3–32PubMed
12.
go back to reference Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585CrossRefPubMed Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585CrossRefPubMed
14.
go back to reference Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919CrossRefPubMed Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919CrossRefPubMed
15.
go back to reference van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ (1986) Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A 83:2330–2334PubMedCentralCrossRefPubMed van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ (1986) Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A 83:2330–2334PubMedCentralCrossRefPubMed
17.
go back to reference Duke GM, Palmenberg AC (1989) Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol 63:1822–1826PubMedCentralPubMed Duke GM, Palmenberg AC (1989) Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol 63:1822–1826PubMedCentralPubMed
18.
go back to reference Klump WM, Bergmann I, Muller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5’ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583PubMedCentralPubMed Klump WM, Bergmann I, Muller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5’ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583PubMedCentralPubMed
25.
go back to reference Lindberg AM, Polacek C, Johansson S (1997) Amplification and cloning of complete enterovirus genomes by long distance PCR. J Virol Methods 65:191–199CrossRefPubMed Lindberg AM, Polacek C, Johansson S (1997) Amplification and cloning of complete enterovirus genomes by long distance PCR. J Virol Methods 65:191–199CrossRefPubMed
26.
go back to reference Lindberg AM, Johansson S, Andersson A (1999) Echovirus 5: infectious transcripts and complete nucleotide sequence from uncloned cDNA. Virus Res 59:75–87CrossRefPubMed Lindberg AM, Johansson S, Andersson A (1999) Echovirus 5: infectious transcripts and complete nucleotide sequence from uncloned cDNA. Virus Res 59:75–87CrossRefPubMed
27.
go back to reference Lindberg AM, Andersson A (1999) Purification of full-length enterovirus cDNA by solid phase hybridization capture facilitates amplification of complete genomes. J Virol Methods 77:131–137CrossRefPubMed Lindberg AM, Andersson A (1999) Purification of full-length enterovirus cDNA by solid phase hybridization capture facilitates amplification of complete genomes. J Virol Methods 77:131–137CrossRefPubMed
28.
go back to reference Hierholzer JC, Killington RA (1996) Virus isolation and quantitation. In: Mahy BWJ, Kangro HO (eds) Virology methods manual. Academic Pres Limited, Glasgow, pp 25–46CrossRef Hierholzer JC, Killington RA (1996) Virus isolation and quantitation. In: Mahy BWJ, Kangro HO (eds) Virology methods manual. Academic Pres Limited, Glasgow, pp 25–46CrossRef
29.
31.
go back to reference Khetsuriani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA (2006) Enterovirus surveillance-United States, 1970–2005. MMWR Surveill Summ 55:1–20PubMed Khetsuriani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA (2006) Enterovirus surveillance-United States, 1970–2005. MMWR Surveill Summ 55:1–20PubMed
32.
go back to reference Roos FC, Roberts AM, Hwang II, Moriyama EH, Evans AJ, Sybingco S, Watson IR, Carneiro LA, Gedye C, Girardin SE, Ailles LE, Jewett MA, Milosevic M, Wilson BC, Bell JC, Der SD, Ohh M (2010) Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol Med 2:275–288. doi:10.1002/emmm.201000081 PubMedCentralCrossRefPubMed Roos FC, Roberts AM, Hwang II, Moriyama EH, Evans AJ, Sybingco S, Watson IR, Carneiro LA, Gedye C, Girardin SE, Ailles LE, Jewett MA, Milosevic M, Wilson BC, Bell JC, Der SD, Ohh M (2010) Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol Med 2:275–288. doi:10.​1002/​emmm.​201000081 PubMedCentralCrossRefPubMed
33.
go back to reference Shafren DR, Sylvester D, Johansson ES, Campbell IG, Barry RD (2005) Oncolysis of human ovarian cancers by echovirus type 1. Int J Cancer 115:320–328CrossRefPubMed Shafren DR, Sylvester D, Johansson ES, Campbell IG, Barry RD (2005) Oncolysis of human ovarian cancers by echovirus type 1. Int J Cancer 115:320–328CrossRefPubMed
34.
go back to reference Atkins GJ, Smyth JW, Fleeton MN, Galbraith SE, Sheahan BJ (2004) Alphaviruses and their derived vectors as anti-tumor agents. Curr Cancer Drug Targets 4:597–607CrossRefPubMed Atkins GJ, Smyth JW, Fleeton MN, Galbraith SE, Sheahan BJ (2004) Alphaviruses and their derived vectors as anti-tumor agents. Curr Cancer Drug Targets 4:597–607CrossRefPubMed
Metadata
Title
Improved replication efficiency of echovirus 5 after transfection of colon cancer cells using an authentic 5’ RNA genome end methodology
Authors
S. Israelsson
A. Sävneby
J-O. Ekström
N. Jonsson
K. Edman
A. M. Lindberg
Publication date
01-12-2014
Publisher
Springer US
Published in
Investigational New Drugs / Issue 6/2014
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-014-0136-z

Other articles of this Issue 6/2014

Investigational New Drugs 6/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine