Skip to main content
Top
Published in: Investigational New Drugs 1/2013

01-02-2013 | SHORT REPORT

The PDT activity of free and pegylated pheophorbide a against an amelanotic melanoma transplanted in C57/BL6 mice

Authors: Valentina Rapozzi, Sonia Zorzet, Marina Zacchigna, Sara Drioli, Luigi E. Xodo

Published in: Investigational New Drugs | Issue 1/2013

Login to get access

Summary

Pheophorbide a (Pba) is a chlorophyll catabolite that has been proposed as photosensitizer in photodynamic therapy. In a previous study we conjugated Pba to monomethoxy-polyethylene glycol (mPEG-Pba), to increase its solubility and pharmacokinetics. Here, we compare the photodynamic therapy efficacy of free Pba and mPEG-Pba to cure a subcutaneous amelanotic melanoma transplanted in C57/BL6 mice. The photosensitizers, i.p. injected (30 mg/kg), showed no toxicity when the animals were kept in the dark. But, after photoactivation with a 660 nm laser (fluence of 193 J/cm2), both photosensitizers, in particular mPEG-Pba, showed a strong efficacy to cure the tumor, both in terms of tumor growth delay and increase of Kaplan-Meier median survival time. Together, our in vivo data demonstrate that mPEG-conjugated Pba is a promising photosensitizer for the photodynamic therapy of cancer.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef
3.
go back to reference Pervaiz S (2001) Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J 15:612–617PubMedCrossRef Pervaiz S (2001) Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J 15:612–617PubMedCrossRef
4.
go back to reference Juarranz A, Jaén P, Sanz-Rodríguez F et al (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154PubMedCrossRef Juarranz A, Jaén P, Sanz-Rodríguez F et al (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154PubMedCrossRef
5.
go back to reference Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915PubMedCrossRef Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915PubMedCrossRef
6.
go back to reference Schuitmaker JJ, Baas P, van Leengoed HL et al (1996) Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B 34:3–12PubMedCrossRef Schuitmaker JJ, Baas P, van Leengoed HL et al (1996) Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B 34:3–12PubMedCrossRef
7.
go back to reference Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281PubMedCrossRef Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281PubMedCrossRef
8.
go back to reference Derycke AS, Kamuhabwa A, Gijsens A et al (2004) Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells. J Natl Cancer Inst 96:1620–1630PubMedCrossRef Derycke AS, Kamuhabwa A, Gijsens A et al (2004) Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells. J Natl Cancer Inst 96:1620–1630PubMedCrossRef
9.
go back to reference Master AM, Qi Y, Oleinick NL et al (2011) EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine. doi:10.1016/j.nano.2011.09.012 Master AM, Qi Y, Oleinick NL et al (2011) EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine. doi:10.​1016/​j.​nano.​2011.​09.​012
10.
go back to reference Abu-Yousif AO, Moor AC, Zheng X et al (2012) Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. doi:10.1016/j.canlet.2012.01.014 Abu-Yousif AO, Moor AC, Zheng X et al (2012) Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. doi:10.​1016/​j.​canlet.​2012.​01.​014
11.
go back to reference Giuntini F, Alonso CM, Boyle RW (2011) Synthetic approaches for the conjugation of porphyrin and related macrocycles to peptides and proteins. Photochem Photobiol Sci 10:759–791PubMedCrossRef Giuntini F, Alonso CM, Boyle RW (2011) Synthetic approaches for the conjugation of porphyrin and related macrocycles to peptides and proteins. Photochem Photobiol Sci 10:759–791PubMedCrossRef
12.
go back to reference Srivatsan A, Ethirajan M, Pandey SK et al (2011) Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol Pharm 8:1186–1197PubMedCrossRef Srivatsan A, Ethirajan M, Pandey SK et al (2011) Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol Pharm 8:1186–1197PubMedCrossRef
13.
go back to reference Bhatti M, Yahioglu G, Milgrom LR et al (2008) Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer 122:1155–1163PubMedCrossRef Bhatti M, Yahioglu G, Milgrom LR et al (2008) Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer 122:1155–1163PubMedCrossRef
14.
go back to reference Van Dongen GA, Visser GW, Vrouenraets MB (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 56:31–52PubMedCrossRef Van Dongen GA, Visser GW, Vrouenraets MB (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 56:31–52PubMedCrossRef
15.
go back to reference Gupta S, Dwarakanath BS, Chaudhury NK et al (2011) In vitro and in vivo targeted delivery of photosensitizers to the tumor cells for enhanced photodynamic effects. J Cancer Res Ther 7:314–324PubMedCrossRef Gupta S, Dwarakanath BS, Chaudhury NK et al (2011) In vitro and in vivo targeted delivery of photosensitizers to the tumor cells for enhanced photodynamic effects. J Cancer Res Ther 7:314–324PubMedCrossRef
16.
go back to reference Shieh YA, Yang SJ, Wei MF et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442PubMedCrossRef Shieh YA, Yang SJ, Wei MF et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442PubMedCrossRef
17.
go back to reference Zheng X, Pandey RK (2008) Porphyrin-carbohydrate conjugates: impact of carbohydrate moieties in photodynamic therapy (PDT). Anticancer Agents Med Chem 8:241–268PubMedCrossRef Zheng X, Pandey RK (2008) Porphyrin-carbohydrate conjugates: impact of carbohydrate moieties in photodynamic therapy (PDT). Anticancer Agents Med Chem 8:241–268PubMedCrossRef
18.
go back to reference Di Stasio B, Frochot C, Dumas D et al (2005) The 2- aminoglucosamide motif improves cellular uptake and photodynamic activity of tetraphenylporphyrin. Eur J Med Chem 40:1111–1122PubMedCrossRef Di Stasio B, Frochot C, Dumas D et al (2005) The 2- aminoglucosamide motif improves cellular uptake and photodynamic activity of tetraphenylporphyrin. Eur J Med Chem 40:1111–1122PubMedCrossRef
19.
go back to reference Gravier J, Schneider R, Frochot C et al (2008) Improvement of metatetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J Med Chem 51:3867–3877PubMedCrossRef Gravier J, Schneider R, Frochot C et al (2008) Improvement of metatetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J Med Chem 51:3867–3877PubMedCrossRef
20.
go back to reference Hamblin MR, Miller JL, Rizvi I et al (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res 61:7155–7162PubMed Hamblin MR, Miller JL, Rizvi I et al (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res 61:7155–7162PubMed
21.
go back to reference Hamblin MR, Miller JL, Rizvi I et al (2003) Pegylation of charged polymer photosensitizer conjugates: effects on photodynamic efficacy. Br J Cancer 89:937–943PubMedCrossRef Hamblin MR, Miller JL, Rizvi I et al (2003) Pegylation of charged polymer photosensitizer conjugates: effects on photodynamic efficacy. Br J Cancer 89:937–943PubMedCrossRef
22.
go back to reference Chouikrat R, Seve A, Vanderesse R et al (2012) Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem 19:781–792PubMedCrossRef Chouikrat R, Seve A, Vanderesse R et al (2012) Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem 19:781–792PubMedCrossRef
23.
go back to reference Wieder ME, Hone DC, Cook MJ et al (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a 'Trojan horse'. Photochem Photobiol Sci 5:727–734PubMedCrossRef Wieder ME, Hone DC, Cook MJ et al (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a 'Trojan horse'. Photochem Photobiol Sci 5:727–734PubMedCrossRef
24.
go back to reference Stuchinskaya T, Moreno M, Cook MJ et al (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831PubMedCrossRef Stuchinskaya T, Moreno M, Cook MJ et al (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831PubMedCrossRef
25.
go back to reference Couleaud P, Morosini V, Frochot C et al (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2:1083–1095PubMedCrossRef Couleaud P, Morosini V, Frochot C et al (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2:1083–1095PubMedCrossRef
26.
go back to reference Zhu Z, Tang Z, Phillips JA et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857PubMedCrossRef Zhu Z, Tang Z, Phillips JA et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857PubMedCrossRef
27.
go back to reference Huang P, Lin J, Yang D et al (2011) Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J Control Release 152(Suppl 1):e33–e34PubMedCrossRef Huang P, Lin J, Yang D et al (2011) Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J Control Release 152(Suppl 1):e33–e34PubMedCrossRef
28.
go back to reference Sortino S, Mazzaglia A, Monsù Scolaro L et al (2006) Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as a “carrier-sensitizer” system in photodynamic cancer therapy. Biomaterials 27:4256–4265PubMedCrossRef Sortino S, Mazzaglia A, Monsù Scolaro L et al (2006) Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as a “carrier-sensitizer” system in photodynamic cancer therapy. Biomaterials 27:4256–4265PubMedCrossRef
29.
go back to reference McCarthy JR, Perez JM, Bruckner C et al (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 5:2552–2556PubMedCrossRef McCarthy JR, Perez JM, Bruckner C et al (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 5:2552–2556PubMedCrossRef
30.
go back to reference Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathways of chlorophyll: what has gene cloning revealed? Trends Plan Sci 5:426–431CrossRef Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathways of chlorophyll: what has gene cloning revealed? Trends Plan Sci 5:426–431CrossRef
31.
go back to reference Rapozzi V, Zacchigna M, Biffi S et al (2010) Conjugated PDT drug. Photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol Ther 10:1–12CrossRef Rapozzi V, Zacchigna M, Biffi S et al (2010) Conjugated PDT drug. Photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol Ther 10:1–12CrossRef
32.
go back to reference Taub AF (2008) Photodynamic therapy in dermatology. In: Hamblin MR, Mroz P (eds) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Boston, pp 419–442 Taub AF (2008) Photodynamic therapy in dermatology. In: Hamblin MR, Mroz P (eds) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Boston, pp 419–442
33.
go back to reference Soncin M, Busetti A, Reddi E et al (1997) Pharmacokinetic and phototherapeutic properties of axially substitued Si(IV)-tetradibenzobarreleno-octabutoxyphtalocyanines. J Photochem Photobiol B 40:163–167PubMedCrossRef Soncin M, Busetti A, Reddi E et al (1997) Pharmacokinetic and phototherapeutic properties of axially substitued Si(IV)-tetradibenzobarreleno-octabutoxyphtalocyanines. J Photochem Photobiol B 40:163–167PubMedCrossRef
34.
go back to reference Fabris C, Vicente MGH, Hao E et al (2007) Tumour-localizing and-photosensitizing properties of meso-tetra(4-nido-carboranylphenyl)porphyrin. J Photochem Photobiol B: Biol 89:131–136CrossRef Fabris C, Vicente MGH, Hao E et al (2007) Tumour-localizing and-photosensitizing properties of meso-tetra(4-nido-carboranylphenyl)porphyrin. J Photochem Photobiol B: Biol 89:131–136CrossRef
35.
go back to reference Camerin M, Magaraggia M, Soncin M et al (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 46:1910–1918PubMedCrossRef Camerin M, Magaraggia M, Soncin M et al (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 46:1910–1918PubMedCrossRef
36.
go back to reference Nelson JS, McCullough JL, Berns MW (1988) Photodynamic therapy of human- malignant melanoma xenografts in at hymic nude mice. J Natl Cancer Inst 80:56–60PubMedCrossRef Nelson JS, McCullough JL, Berns MW (1988) Photodynamic therapy of human- malignant melanoma xenografts in at hymic nude mice. J Natl Cancer Inst 80:56–60PubMedCrossRef
37.
go back to reference Campaner P, Drioli S, Bonora GM (2006) Synthesis of selectively end-modified high-molecular weight polyethylenglycol. Lett Org Chem 10:773–779CrossRef Campaner P, Drioli S, Bonora GM (2006) Synthesis of selectively end-modified high-molecular weight polyethylenglycol. Lett Org Chem 10:773–779CrossRef
38.
go back to reference Röeder B, Hanke TH, Oelckers ST et al (2000) Photophysical properties of pheophorbide a in solution and in a model membrane systems. J Porphyr Phtalocyanines 4:37–44CrossRef Röeder B, Hanke TH, Oelckers ST et al (2000) Photophysical properties of pheophorbide a in solution and in a model membrane systems. J Porphyr Phtalocyanines 4:37–44CrossRef
39.
go back to reference Sternberg ED, Dolphin D, Bruckner C (1998) Porphyrin based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202CrossRef Sternberg ED, Dolphin D, Bruckner C (1998) Porphyrin based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202CrossRef
40.
go back to reference Xodo LE, Rapozzi V, Zacchigna M et al (2012) The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr Med Chem 19:799–807PubMedCrossRef Xodo LE, Rapozzi V, Zacchigna M et al (2012) The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr Med Chem 19:799–807PubMedCrossRef
41.
go back to reference Tang PM, Zhang DM, Xuan NH et al (2009) Photodynamic therapy ninhibits p-glycoprotein mediated multidrug resistanve via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer 8:56–67PubMedCrossRef Tang PM, Zhang DM, Xuan NH et al (2009) Photodynamic therapy ninhibits p-glycoprotein mediated multidrug resistanve via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer 8:56–67PubMedCrossRef
42.
go back to reference Rapozzi V, Miculan M, Xodo LE (2009) Evidence that photoactivated pheophorbide a causes in human cancer cells a photodynamic effect involving lipid peroxidation. Cancer Biol Ther 8:1318–1327PubMedCrossRef Rapozzi V, Miculan M, Xodo LE (2009) Evidence that photoactivated pheophorbide a causes in human cancer cells a photodynamic effect involving lipid peroxidation. Cancer Biol Ther 8:1318–1327PubMedCrossRef
43.
go back to reference Hajri A, Wack S, Meyer C et al (2002) In vitro and in vivo efficacy of Photofrin and Pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75:140–148PubMedCrossRef Hajri A, Wack S, Meyer C et al (2002) In vitro and in vivo efficacy of Photofrin and Pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75:140–148PubMedCrossRef
44.
go back to reference Hoi SW, Wong HM, Chan JY et al (2011) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res. doi:10.1002/ptr.3607 Hoi SW, Wong HM, Chan JY et al (2011) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res. doi:10.​1002/​ptr.​3607
45.
go back to reference Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–6308PubMedCrossRef Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–6308PubMedCrossRef
46.
go back to reference Rapozzi V, Umezawa K, Xodo LE (2011) Role of NF-kB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy. Lasers Surg Med 43:575–585PubMed Rapozzi V, Umezawa K, Xodo LE (2011) Role of NF-kB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy. Lasers Surg Med 43:575–585PubMed
47.
go back to reference Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–d391PubMedCrossRef Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–d391PubMedCrossRef
48.
go back to reference Landeer HM, Milbank AJ, Tauras JM et al (1996) Redox regulation of cell signaling. Nature 381:380–381CrossRef Landeer HM, Milbank AJ, Tauras JM et al (1996) Redox regulation of cell signaling. Nature 381:380–381CrossRef
49.
go back to reference Chan WH (2011) Photodynamic therapy induces apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci 12:1041–1059PubMedCrossRef Chan WH (2011) Photodynamic therapy induces apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci 12:1041–1059PubMedCrossRef
50.
go back to reference Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRef Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRef
51.
go back to reference Wiegell SR, Fabricius S, Stender IM et al (2011) A randomized, multicentre study of directed daylight exposure times of 1½ vs. 2½ h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp. Br J Dermatol 164:1083–1090PubMedCrossRef Wiegell SR, Fabricius S, Stender IM et al (2011) A randomized, multicentre study of directed daylight exposure times of 1½ vs. 2½ h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp. Br J Dermatol 164:1083–1090PubMedCrossRef
Metadata
Title
The PDT activity of free and pegylated pheophorbide a against an amelanotic melanoma transplanted in C57/BL6 mice
Authors
Valentina Rapozzi
Sonia Zorzet
Marina Zacchigna
Sara Drioli
Luigi E. Xodo
Publication date
01-02-2013
Publisher
Springer US
Published in
Investigational New Drugs / Issue 1/2013
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-012-9844-4

Other articles of this Issue 1/2013

Investigational New Drugs 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine