Skip to main content
Top
Published in: Investigational New Drugs 1/2010

Open Access 01-12-2010 | SPECIAL ISSUE ARTICLE

The DAC system and associations with acute leukemias and myelodysplastic syndromes

Authors: Gesine Bug, Oliver G. Ottmann

Published in: Investigational New Drugs | Special Issue 1/2010

Login to get access

Summary

Imbalances of histone acetyltransferase (HAT) and deacetylase activity (DAC) that result in deregulated gene expression are commonly observed in leukemias. These alterations provide the basis for novel therapeutic approaches that target the epigenetic mechanisms implicated in leukemogenesis. As the acetylation status of histones has been linked to transcriptional regulation of genes involved particularly in differentiation and apoptosis, DAC inhibitors (DACi) have attracted considerable attention for treatment of hematologic malignancies. DACi encompass a structurally diverse family of compounds that are being explored as single agents as well as in combination with chemotherapeutic drugs, small molecule inhibitors of signaling pathways and hypomethylating agents. While DACi have shown clear evidence of activity in acute myeloid leukemia, myelodysplastic syndromes and lymphoid malignancies, their precise role in treatment of these different entities remain to be elucidated. Successful development of these compounds as elements of novel targeted treatment strategies for leukemia will require that clinical studies be performed in conjunction with translational research including efforts to identify predictive biomarkers.
Literature
1.
go back to reference Weichert W (2009) HDAC expression and clinical prognosis in human malignancies. Cancer Lett 280(2):168–176CrossRefPubMed Weichert W (2009) HDAC expression and clinical prognosis in human malignancies. Cancer Lett 280(2):168–176CrossRefPubMed
2.
go back to reference Redner R, Wang J, Liu J (1999) Chromatin remodelling and leukemia: new therapeutic paradigms. Blood 94:417–428PubMed Redner R, Wang J, Liu J (1999) Chromatin remodelling and leukemia: new therapeutic paradigms. Blood 94:417–428PubMed
3.
go back to reference Jones LK, Saha V (2002) Chromatin modification, leukaemia and implications for therapy. Br J Haematol 118(3):714–727CrossRefPubMed Jones LK, Saha V (2002) Chromatin modification, leukaemia and implications for therapy. Br J Haematol 118(3):714–727CrossRefPubMed
4.
go back to reference Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194–202CrossRefPubMed Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194–202CrossRefPubMed
5.
go back to reference Johnstone RW, Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4(1):13–18CrossRefPubMed Johnstone RW, Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4(1):13–18CrossRefPubMed
6.
go back to reference Lindemann RK, Gabrielli B, Johnstone RW (2004) Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle 3(6):779–788PubMed Lindemann RK, Gabrielli B, Johnstone RW (2004) Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle 3(6):779–788PubMed
7.
go back to reference Scandura JM, Boccuni P, Cammenga J, Nimer SD (2002) Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 21(21):3422–3444CrossRefPubMed Scandura JM, Boccuni P, Cammenga J, Nimer SD (2002) Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 21(21):3422–3444CrossRefPubMed
8.
go back to reference Durst KL, Hiebert SW (2004) Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23(24):4220–4224CrossRefPubMed Durst KL, Hiebert SW (2004) Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23(24):4220–4224CrossRefPubMed
9.
10.
go back to reference Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS et al (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14(1):33–41CrossRefPubMed Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS et al (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14(1):33–41CrossRefPubMed
11.
go back to reference Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B et al (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 94(16):8732–8737CrossRefPubMed Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B et al (1997) MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 94(16):8732–8737CrossRefPubMed
12.
go back to reference Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H et al (2002) The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8(7):743–750CrossRefPubMed Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H et al (2002) The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8(7):743–750CrossRefPubMed
13.
go back to reference Krug U, Ganser A, Koeffler HP (2002) Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21(21):3475–3495CrossRefPubMed Krug U, Ganser A, Koeffler HP (2002) Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21(21):3475–3495CrossRefPubMed
14.
go back to reference Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL et al (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65(4):1277–1284CrossRefPubMed Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL et al (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65(4):1277–1284CrossRefPubMed
15.
go back to reference Yang XJ, Ullah M (2007) MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26(37):5408–5419CrossRefPubMed Yang XJ, Ullah M (2007) MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26(37):5408–5419CrossRefPubMed
16.
go back to reference Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM (2002) Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 99(23):14789–14794CrossRefPubMed Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM (2002) Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 99(23):14789–14794CrossRefPubMed
17.
go back to reference Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF et al (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24(3):300–303CrossRefPubMed Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF et al (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24(3):300–303CrossRefPubMed
18.
go back to reference Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32(3):959–976CrossRefPubMed Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32(3):959–976CrossRefPubMed
19.
go back to reference Blobel GA (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 95(3):745–755PubMed Blobel GA (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 95(3):745–755PubMed
20.
go back to reference Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S et al (1997) All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90(2):535–541PubMed Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S et al (1997) All patients with the T(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 90(2):535–541PubMed
21.
go back to reference Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535–1548CrossRefPubMed Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535–1548CrossRefPubMed
22.
go back to reference Zelent A, Greaves M, Enver T (2004) Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 23(24):4275–4283CrossRefPubMed Zelent A, Greaves M, Enver T (2004) Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 23(24):4275–4283CrossRefPubMed
23.
go back to reference Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453CrossRefPubMed Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453CrossRefPubMed
24.
go back to reference Marchion D, Munster P (2007) Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 7(4):583–598CrossRefPubMed Marchion D, Munster P (2007) Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 7(4):583–598CrossRefPubMed
25.
go back to reference Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96(2):293–304CrossRefPubMed Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96(2):293–304CrossRefPubMed
26.
go back to reference Gray SG, Qian CN, Furge K, Guo X, Teh BT (2004) Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 24(4):773–795PubMed Gray SG, Qian CN, Furge K, Guo X, Teh BT (2004) Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 24(4):773–795PubMed
27.
go back to reference Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA et al (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(10):3697–3702CrossRefPubMed Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA et al (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(10):3697–3702CrossRefPubMed
28.
go back to reference Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23(17):3971–3993CrossRefPubMed Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23(17):3971–3993CrossRefPubMed
29.
go back to reference Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 100(8):4389–4394CrossRefPubMed Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 100(8):4389–4394CrossRefPubMed
30.
go back to reference Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T (2002) Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 277(28):25562–25567CrossRefPubMed Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T (2002) Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 277(28):25562–25567CrossRefPubMed
31.
go back to reference Bannister AJ, Miska EA, Gorlich D, Kouzarides T (2000) Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10(8):467–470CrossRefPubMed Bannister AJ, Miska EA, Gorlich D, Kouzarides T (2000) Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10(8):467–470CrossRefPubMed
32.
go back to reference Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277(52):50934–50940CrossRefPubMed Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277(52):50934–50940CrossRefPubMed
33.
go back to reference Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13(5):627–638CrossRefPubMed Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13(5):627–638CrossRefPubMed
34.
go back to reference Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H et al (2003) Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2(10):971–984PubMed Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H et al (2003) Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2(10):971–984PubMed
35.
go back to reference Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458CrossRefPubMed Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458CrossRefPubMed
36.
go back to reference Polevoda B, Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3(5):reviews0006 Polevoda B, Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3(5):reviews0006
37.
go back to reference Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51CrossRefPubMed Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51CrossRefPubMed
38.
go back to reference Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23CrossRefPubMed Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23CrossRefPubMed
39.
go back to reference Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Med 11(1):71–76CrossRefPubMed Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Med 11(1):71–76CrossRefPubMed
40.
go back to reference Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Med 11(1):77–84CrossRefPubMed Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Med 11(1):77–84CrossRefPubMed
41.
go back to reference Reikvam H, Ersvaer E, Bruserud O (2009) Heat shock protein 90—a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9(6):761–776CrossRefPubMed Reikvam H, Ersvaer E, Bruserud O (2009) Heat shock protein 90—a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9(6):761–776CrossRefPubMed
42.
go back to reference Göttlicher M, Minucci S, Zhu J, Krämer O, Schimpf A, Giavara S et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978CrossRefPubMed Göttlicher M, Minucci S, Zhu J, Krämer O, Schimpf A, Giavara S et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978CrossRefPubMed
43.
go back to reference Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, Huynh L et al (2007) Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther 321(3):953–960CrossRefPubMed Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, Huynh L et al (2007) Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther 321(3):953–960CrossRefPubMed
44.
go back to reference Bug G, Schwarz K, Schoch C, Kampfmann M, Henschler R, Hoelzer D et al (2007) Effect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia. Haematologica 92(4):542–545CrossRefPubMed Bug G, Schwarz K, Schoch C, Kampfmann M, Henschler R, Hoelzer D et al (2007) Effect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia. Haematologica 92(4):542–545CrossRefPubMed
45.
go back to reference Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G et al (2008) Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene 27(12):1767–1778CrossRefPubMed Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G et al (2008) Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene 27(12):1767–1778CrossRefPubMed
46.
go back to reference Murata M, Towatari M, Kosugi H, Tanimoto M, Ueda R, Saito H et al (2000) Apoptotic cytotoxic effects of a histone deacetylase inhibitor, FK228, on malignant lymphoid cells. Jpn J Cancer Res 91(11):1154–1160PubMed Murata M, Towatari M, Kosugi H, Tanimoto M, Ueda R, Saito H et al (2000) Apoptotic cytotoxic effects of a histone deacetylase inhibitor, FK228, on malignant lymphoid cells. Jpn J Cancer Res 91(11):1154–1160PubMed
47.
go back to reference Romanski A, Bacic B, Bug G, Pfeifer H, Gul H, Remiszewski S et al (2004) Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica 89(4):419–426PubMed Romanski A, Bacic B, Bug G, Pfeifer H, Gul H, Remiszewski S et al (2004) Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica 89(4):419–426PubMed
48.
go back to reference Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P et al (2008) The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph-acute lymphoblastic leukemia cells. Blood 111(10):5093–5100CrossRefPubMed Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P et al (2008) The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph-acute lymphoblastic leukemia cells. Blood 111(10):5093–5100CrossRefPubMed
49.
go back to reference Tsapis M, Lieb M, Manzo F, Shankaranarayanan P, Herbrecht R, Lutz P et al (2007) HDAC inhibitors induce apoptosis in glucocorticoid-resistant acute lymphatic leukemia cells despite a switch from the extrinsic to the intrinsic death pathway. Int J Biochem Cell Biol 39(7–8):1500–1509CrossRefPubMed Tsapis M, Lieb M, Manzo F, Shankaranarayanan P, Herbrecht R, Lutz P et al (2007) HDAC inhibitors induce apoptosis in glucocorticoid-resistant acute lymphatic leukemia cells despite a switch from the extrinsic to the intrinsic death pathway. Int J Biochem Cell Biol 39(7–8):1500–1509CrossRefPubMed
50.
go back to reference Stams WA, den Boer ML, Beverloo HB, Kazemier KM, van Wering ER, Janka-Schaub GE et al (2005) Effect of the histone deacetylase inhibitor depsipeptide on B-cell differentiation in both TEL-AML1-positive and negative childhood acute lymphoblastic leukemia. Haematologica 90(12):1697–1699PubMed Stams WA, den Boer ML, Beverloo HB, Kazemier KM, van Wering ER, Janka-Schaub GE et al (2005) Effect of the histone deacetylase inhibitor depsipeptide on B-cell differentiation in both TEL-AML1-positive and negative childhood acute lymphoblastic leukemia. Haematologica 90(12):1697–1699PubMed
51.
go back to reference Einsiedel HG, Kawan L, Eckert C, Witt O, Fichtner I, Henze G et al (2006) Histone deacetylase inhibitors have antitumor activity in two NOD/SCID mouse models of B-cell precursor childhood acute lymphoblastic leukemia. Leukemia 20(8):1435–1436CrossRefPubMed Einsiedel HG, Kawan L, Eckert C, Witt O, Fichtner I, Henze G et al (2006) Histone deacetylase inhibitors have antitumor activity in two NOD/SCID mouse models of B-cell precursor childhood acute lymphoblastic leukemia. Leukemia 20(8):1435–1436CrossRefPubMed
52.
go back to reference Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L et al (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 93(12):5705–5708CrossRefPubMed Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L et al (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci USA 93(12):5705–5708CrossRefPubMed
53.
go back to reference Archer SY, Meng S, Shei A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95(12):6791–6796CrossRefPubMed Archer SY, Meng S, Shei A, Hodin RA (1998) p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 95(12):6791–6796CrossRefPubMed
54.
go back to reference He LZ, Tolentino T, Grayson P, Zhong S, Warrell RP Jr, Rifkind RA et al (2001) Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Investig 108(9):1321–1330PubMed He LZ, Tolentino T, Grayson P, Zhong S, Warrell RP Jr, Rifkind RA et al (2001) Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Investig 108(9):1321–1330PubMed
55.
go back to reference Ferrara F, Fazi F, Bianchini A, Padula F, Gelmetti V, Minucci S et al (2001) Histone deacytylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 61:2–7PubMed Ferrara F, Fazi F, Bianchini A, Padula F, Gelmetti V, Minucci S et al (2001) Histone deacytylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 61:2–7PubMed
56.
go back to reference Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107CrossRefPubMed Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107CrossRefPubMed
57.
go back to reference Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat reviews 5(9):769–784CrossRef Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat reviews 5(9):769–784CrossRef
58.
go back to reference Fabre C, Grosjean J, Tailler M, Boehrer S, Ades L, Perfettini JL et al (2008) A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFkappaB inhibition in malignant myeloblasts. Cell Cycle 7(14):2139–2145CrossRefPubMed Fabre C, Grosjean J, Tailler M, Boehrer S, Ades L, Perfettini JL et al (2008) A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFkappaB inhibition in malignant myeloblasts. Cell Cycle 7(14):2139–2145CrossRefPubMed
59.
go back to reference Fiskus W, Buckley K, Rao R, Mandawat A, Yang Y, Joshi R et al (2009) Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther 8(10):939–950PubMed Fiskus W, Buckley K, Rao R, Mandawat A, Yang Y, Joshi R et al (2009) Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther 8(10):939–950PubMed
60.
go back to reference Huang Y, Waxman S (1998) Enhanced growth inhibition and differentiation of fluorodeoxyuridine-treated human colon carcinoma cells by phenylbutyrate. Clin Cancer Res 4(10):2503–2509PubMed Huang Y, Waxman S (1998) Enhanced growth inhibition and differentiation of fluorodeoxyuridine-treated human colon carcinoma cells by phenylbutyrate. Clin Cancer Res 4(10):2503–2509PubMed
61.
go back to reference Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63(21):7291–7300PubMed Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63(21):7291–7300PubMed
62.
go back to reference Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545CrossRefPubMed Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545CrossRefPubMed
63.
go back to reference Witzig TE, Timm M, Stenson M, Svingen PA, Kaufmann SH (2000) Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin Cancer Res 6(2):681–692PubMed Witzig TE, Timm M, Stenson M, Svingen PA, Kaufmann SH (2000) Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin Cancer Res 6(2):681–692PubMed
64.
go back to reference Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92(2):223–237CrossRefPubMed Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92(2):223–237CrossRefPubMed
65.
go back to reference Kurz EU, Wilson SE, Leader KB, Sampey BP, Allan WP, Yalowich JC et al (2001) The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol Cancer Ther 1(2):121–131PubMed Kurz EU, Wilson SE, Leader KB, Sampey BP, Allan WP, Yalowich JC et al (2001) The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol Cancer Ther 1(2):121–131PubMed
66.
go back to reference Sanchez-Gonzalez B, Yang H, Bueso-Ramos C, Hoshino K, Quintas-Cardama A, Richon VM et al (2006) Antileukemia activity of the combination of an anthracycline with a histone deacetylase inhibitor. Blood 108(4):1174–1182CrossRefPubMed Sanchez-Gonzalez B, Yang H, Bueso-Ramos C, Hoshino K, Quintas-Cardama A, Richon VM et al (2006) Antileukemia activity of the combination of an anthracycline with a histone deacetylase inhibitor. Blood 108(4):1174–1182CrossRefPubMed
67.
go back to reference Maiso P, Colado E, Ocio EM, Garayoa M, Martin J, Atadja P et al (2009) The synergy of panobinostat plus doxorubicin in acute myeloid leukemia suggests a role for HDAC inhibitors in the control of DNA repair. Leukemia 23(12):2265–2274CrossRefPubMed Maiso P, Colado E, Ocio EM, Garayoa M, Martin J, Atadja P et al (2009) The synergy of panobinostat plus doxorubicin in acute myeloid leukemia suggests a role for HDAC inhibitors in the control of DNA repair. Leukemia 23(12):2265–2274CrossRefPubMed
68.
go back to reference Shiozawa K, Nakanishi T, Tan M, Fang HB, Wang WC, Edelman MJ et al (2009) Preclinical studies of vorinostat (suberoylanilide hydroxamic acid) combined with cytosine arabinoside and etoposide for treatment of acute leukemias. Clin Cancer Res 15(5):1698–1707CrossRefPubMed Shiozawa K, Nakanishi T, Tan M, Fang HB, Wang WC, Edelman MJ et al (2009) Preclinical studies of vorinostat (suberoylanilide hydroxamic acid) combined with cytosine arabinoside and etoposide for treatment of acute leukemias. Clin Cancer Res 15(5):1698–1707CrossRefPubMed
69.
go back to reference Maggio SC, Rosato RR, Kramer LB, Dai Y, Rahmani M, Paik DS et al (2004) The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 64(7):2590–2600CrossRefPubMed Maggio SC, Rosato RR, Kramer LB, Dai Y, Rahmani M, Paik DS et al (2004) The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 64(7):2590–2600CrossRefPubMed
70.
go back to reference Leclerc GJ, Mou C, Leclerc GM, Mian AM, Barredo JC (2010) Histone deacetylase inhibitors induce FPGS mRNA expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: implications for combination therapy. Leukemia 24(3):552–562CrossRefPubMed Leclerc GJ, Mou C, Leclerc GM, Mian AM, Barredo JC (2010) Histone deacetylase inhibitors induce FPGS mRNA expression and intracellular accumulation of long-chain methotrexate polyglutamates in childhood acute lymphoblastic leukemia: implications for combination therapy. Leukemia 24(3):552–562CrossRefPubMed
71.
go back to reference Bali P, George P, Cohen P, Tao J, Guo F, Sigua C et al (2004) Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res 10(15):4991–4997CrossRefPubMed Bali P, George P, Cohen P, Tao J, Guo F, Sigua C et al (2004) Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res 10(15):4991–4997CrossRefPubMed
72.
go back to reference Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A (2008) Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 22(12):2159–2168CrossRefPubMed Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A (2008) Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 22(12):2159–2168CrossRefPubMed
73.
go back to reference Kircher B, Schumacher P, Petzer A, Hoflehner E, Haun M, Wolf AM et al (2009) Anti-leukemic activity of valproic acid and imatinib mesylate on human Ph + ALL and CML cells in vitro. Eur J Haematol 83(1):48–56CrossRefPubMed Kircher B, Schumacher P, Petzer A, Hoflehner E, Haun M, Wolf AM et al (2009) Anti-leukemic activity of valproic acid and imatinib mesylate on human Ph + ALL and CML cells in vitro. Eur J Haematol 83(1):48–56CrossRefPubMed
74.
go back to reference Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M et al (2007) NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110(1):267–277CrossRefPubMed Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M et al (2007) NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110(1):267–277CrossRefPubMed
75.
go back to reference Miller CP, Rudra S, Keating MJ, Wierda WG, Palladino M, Chandra J (2009) Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood 113(18):4289–4299CrossRefPubMed Miller CP, Rudra S, Keating MJ, Wierda WG, Palladino M, Chandra J (2009) Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood 113(18):4289–4299CrossRefPubMed
76.
go back to reference Kuendgen A, Strupp C, Aivado M, Bernhardt A, Hildebrandt B, Haas R, et al (2004) Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood. May 20 Kuendgen A, Strupp C, Aivado M, Bernhardt A, Hildebrandt B, Haas R, et al (2004) Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood. May 20
77.
go back to reference Kuendgen A, Knipp S, Fox F, Strupp C, Hildebrandt B, Steidl C et al (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(Suppl 13):61–66CrossRefPubMed Kuendgen A, Knipp S, Fox F, Strupp C, Hildebrandt B, Steidl C et al (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(Suppl 13):61–66CrossRefPubMed
78.
go back to reference Kuendgen A, Gattermann N (2007) Valproic acid for the treatment of myeloid malignancies. Cancer 110(5):943–954CrossRefPubMed Kuendgen A, Gattermann N (2007) Valproic acid for the treatment of myeloid malignancies. Cancer 110(5):943–954CrossRefPubMed
79.
go back to reference Kuendgen A, Schmid M, Schlenk R, Knipp S, Hildebrandt B, Steidl C et al (2006) The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 106(1):112–119CrossRefPubMed Kuendgen A, Schmid M, Schlenk R, Knipp S, Hildebrandt B, Steidl C et al (2006) The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 106(1):112–119CrossRefPubMed
80.
go back to reference Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K et al (2005) Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 104(12):2717–2725CrossRefPubMed Bug G, Ritter M, Wassmann B, Schoch C, Heinzel T, Schwarz K et al (2005) Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia. Cancer 104(12):2717–2725CrossRefPubMed
81.
go back to reference Cimino G, Lo-Coco F, Fenu S, Travaglini L, Finolezzi E, Mancini M et al (2006) Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res 66(17):8903–8911CrossRefPubMed Cimino G, Lo-Coco F, Fenu S, Travaglini L, Finolezzi E, Mancini M et al (2006) Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res 66(17):8903–8911CrossRefPubMed
82.
go back to reference Raffoux E, Chaibi P, Dombret H, Degos L (2005) Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica 90(7):986–988PubMed Raffoux E, Chaibi P, Dombret H, Degos L (2005) Valproic acid and all-trans retinoic acid for the treatment of elderly patients with acute myeloid leukemia. Haematologica 90(7):986–988PubMed
83.
go back to reference Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111(3):1060–1066CrossRefPubMed Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG et al (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111(3):1060–1066CrossRefPubMed
84.
go back to reference Schaefer EW, Loaiza-Bonilla A, Juckett M, DiPersio JF, Roy V, Slack J et al (2009) A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica 94(10):1375–1382CrossRefPubMed Schaefer EW, Loaiza-Bonilla A, Juckett M, DiPersio JF, Roy V, Slack J et al (2009) A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica 94(10):1375–1382CrossRefPubMed
85.
go back to reference Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F et al (2006) A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 12(15):4628–4635CrossRefPubMed Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F et al (2006) A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 12(15):4628–4635CrossRefPubMed
86.
go back to reference Ottmann O, Spencer A, Prince H, Bhalla K, Fischer T, Liu A et al (2008) Phase IA/II study of oral panobinostat (LBH589), a novel pan-deacetylase inhibitor (DACi) demonstrating efficacy in patients with advanced hematologic malignancies. Blood 112:a958 Ottmann O, Spencer A, Prince H, Bhalla K, Fischer T, Liu A et al (2008) Phase IA/II study of oral panobinostat (LBH589), a novel pan-deacetylase inhibitor (DACi) demonstrating efficacy in patients with advanced hematologic malignancies. Blood 112:a958
87.
go back to reference Odenike OM, Alkan S, Sher D, Godwin JE, Huo D, Brandt SJ et al (2008) Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res 14(21):7095–7101CrossRefPubMed Odenike OM, Alkan S, Sher D, Godwin JE, Huo D, Brandt SJ et al (2008) Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res 14(21):7095–7101CrossRefPubMed
88.
go back to reference Klimek VM, Fircanis S, Maslak P, Guernah I, Baum M, Wu N et al (2008) Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 14(3):826–832CrossRefPubMed Klimek VM, Fircanis S, Maslak P, Guernah I, Baum M, Wu N et al (2008) Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 14(3):826–832CrossRefPubMed
89.
go back to reference Gimsing P, Hansen M, Knudsen LM, Knoblauch P, Christensen IJ, Ooi CE et al (2008) A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 81(3):170–176CrossRefPubMed Gimsing P, Hansen M, Knudsen LM, Knoblauch P, Christensen IJ, Ooi CE et al (2008) A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 81(3):170–176CrossRefPubMed
90.
go back to reference Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H et al (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112(4):981–989CrossRefPubMed Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H et al (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112(4):981–989CrossRefPubMed
91.
go back to reference Gojo I, Jiemjit A, Trepel JB, Sparreboom A, Figg WD, Rollins S et al (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109(7):2781–2790PubMed Gojo I, Jiemjit A, Trepel JB, Sparreboom A, Figg WD, Rollins S et al (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109(7):2781–2790PubMed
92.
go back to reference Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR et al (2006) Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res 12(12):3762–3773CrossRefPubMed Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR et al (2006) Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res 12(12):3762–3773CrossRefPubMed
93.
go back to reference Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, et al (2006) Phase I/II study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. Aug 1 Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, et al (2006) Phase I/II study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. Aug 1
94.
go back to reference Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25(25):3884–3891CrossRefPubMed Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25(25):3884–3891CrossRefPubMed
95.
go back to reference Soriano AO, Yang H, Faderl S, Estrov Z, Giles F, Ravandi F et al (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110(7):2302–2308CrossRefPubMed Soriano AO, Yang H, Faderl S, Estrov Z, Giles F, Ravandi F et al (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110(7):2302–2308CrossRefPubMed
96.
go back to reference Voso MT, Santini V, Finelli C, Musto P, Pogliani E, Angelucci E et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15(15):5002–5007CrossRefPubMed Voso MT, Santini V, Finelli C, Musto P, Pogliani E, Angelucci E et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15(15):5002–5007CrossRefPubMed
97.
go back to reference Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66(12):6361–6369CrossRefPubMed Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66(12):6361–6369CrossRefPubMed
98.
go back to reference Kirschbaum M, Gojo I, Goldberg S, Kujawski L, Atallah E, Marks PA et al (2009) Vorinostat in combination with decitabine for the treatment of relapsed or newly diagnosed Acute Myelogenous Leukemia (AML) or Myelodysplastic Syndrome (MDS): a phase i, dose-escalation study. Blood 114:2089a Kirschbaum M, Gojo I, Goldberg S, Kujawski L, Atallah E, Marks PA et al (2009) Vorinostat in combination with decitabine for the treatment of relapsed or newly diagnosed Acute Myelogenous Leukemia (AML) or Myelodysplastic Syndrome (MDS): a phase i, dose-escalation study. Blood 114:2089a
99.
go back to reference Kadia T, Estrov Z, Ravandi F, Koller C, Borthakur G, Jabbour E et al (2009) Long term followup and patterns of failure in patients with Acute Myeloid Leukemia (AML) and high risk Myelodysplastic Syndrome (MDS) treated on studies combining a hypomethylating agent and the histone deacetylase inhibitor (HDACi) valproic acid. Blood 114:2074a Kadia T, Estrov Z, Ravandi F, Koller C, Borthakur G, Jabbour E et al (2009) Long term followup and patterns of failure in patients with Acute Myeloid Leukemia (AML) and high risk Myelodysplastic Syndrome (MDS) treated on studies combining a hypomethylating agent and the histone deacetylase inhibitor (HDACi) valproic acid. Blood 114:2074a
100.
go back to reference Kadia TM, Yang H, Ferrajoli A, Maddipotti S, Schroeder C, Madden TL, et al (2010) A phase I study of vorinostat in combination with idarubicin in relapsed or refractory leukaemia. Br J Haematol. Apr 29 Kadia TM, Yang H, Ferrajoli A, Maddipotti S, Schroeder C, Madden TL, et al (2010) A phase I study of vorinostat in combination with idarubicin in relapsed or refractory leukaemia. Br J Haematol. Apr 29
101.
go back to reference Garcia-Manero G, Tambaro F, Bekele B, Jabbour E, Ravandi F, Yang H et al (2009) Phase II study of vorinostat in combination with idarubicin (Ida) and cytarabine (ara-C) as front line therapy in Acute Myelogenous Leukemia (AML) or higher risk myelodysplastic syndrome (MDS). Blood 114:1055a Garcia-Manero G, Tambaro F, Bekele B, Jabbour E, Ravandi F, Yang H et al (2009) Phase II study of vorinostat in combination with idarubicin (Ida) and cytarabine (ara-C) as front line therapy in Acute Myelogenous Leukemia (AML) or higher risk myelodysplastic syndrome (MDS). Blood 114:1055a
102.
go back to reference Hauswald S, Duque-Afonso J, Wagner MM, Schertl FM, Lubbert M, Peschel C et al (2009) Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res 15(11):3705–3715CrossRefPubMed Hauswald S, Duque-Afonso J, Wagner MM, Schertl FM, Lubbert M, Peschel C et al (2009) Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res 15(11):3705–3715CrossRefPubMed
103.
go back to reference Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L et al (2006) Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 107(4):1546–1554CrossRefPubMed Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L et al (2006) Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 107(4):1546–1554CrossRefPubMed
Metadata
Title
The DAC system and associations with acute leukemias and myelodysplastic syndromes
Authors
Gesine Bug
Oliver G. Ottmann
Publication date
01-12-2010
Publisher
Springer US
Published in
Investigational New Drugs / Issue Special Issue 1/2010
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-010-9595-z

Other articles of this Special Issue 1/2010

Investigational New Drugs 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine