Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2020

01-06-2020 | Evoked Potential | Original Research Article

A new electrophysiological non-invasive method to assess retinocortical conduction time in the Dark Agouti rat through the simultaneous recording of electroretinogram and visual evoked potential

Authors: Raffaele d’Isa, Valerio Castoldi, Silvia Marenna, Roberto Santangelo, Giancarlo Comi, Letizia Leocani

Published in: Documenta Ophthalmologica | Issue 3/2020

Login to get access

Abstract

Purpose

To develop a non-invasive method exploiting simultaneous recording of epidermal visual evoked potential (VEP) and epicorneal electroretinogram (ERG) to study retinocortical function and to evaluate its reliability and repeatability over time.

Methods

Female wild-type DA rats were anesthetized with ketamine/xylazine (40/5 mg/kg). Epidermal VEP (Ag/AgCl cup electrode on scalp) and epicorneal ERG (gold ring electrode on eye surface) were recorded simultaneously in response to flash stimulation.

Results

ANOVA for repeated measures showed that peak times of ERG b-wave and of VEP N1 and P2 were stable across 6 weekly time-points, as well as the corresponding amplitudes. Mean retinocortical time from b-wave to N1 (RCT1) was 7.6 ms and remained comparable across the 6 time-points. Mean retinocortical time from b-wave to P2 (RCT2) was 28.7 ms and did not show significant variations over time. Coefficient of variation (CoV%) and CoV% adjusted for sample size, namely relative standard error (RSE%), were calculated as indexes of repeatability. Good RSE% over time was obtained (< 5% for b-wave, N1 and P2 peak times; < 20% and < 7% for RCT1 and RCT2, respectively).

Conclusions

Simultaneous recording of ERG and VEP has been previously achieved through invasive methods requiring surgery. Here, we present a new non-invasive method, which allowed to obtain peak and retinocortical times that were constant across a long period and had a good repeatability over time. This method will ensure not only a gain in animal welfare, but will also avoid stress and eye or brain lesions which can interfere with experimental variables.
Appendix
Available only for authorised users
Literature
1.
go back to reference You Y, Klistorner A, Thie J, Graham SL (2011) Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Doc Ophthalmol 123(2):109–119PubMedCrossRef You Y, Klistorner A, Thie J, Graham SL (2011) Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Doc Ophthalmol 123(2):109–119PubMedCrossRef
2.
go back to reference Leocani L, Comi G (2000) Neurophysiological investigations in multiple sclerosis. Curr Opin Neurol 13(3):255–261PubMedCrossRef Leocani L, Comi G (2000) Neurophysiological investigations in multiple sclerosis. Curr Opin Neurol 13(3):255–261PubMedCrossRef
3.
go back to reference Heckenlively JR, Arden GB (2006) Principle and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, BostonCrossRef Heckenlively JR, Arden GB (2006) Principle and practice of clinical electrophysiology of vision, 2nd edn. MIT Press, BostonCrossRef
4.
go back to reference Makowiecki K, Garrett A, Clark V, Graha SL, Rodger J (2015) Reliability of VEP recordings using chronically implanted screw electrodes in mice. Transl Vis Sci Technol 4:15PubMedPubMedCentralCrossRef Makowiecki K, Garrett A, Clark V, Graha SL, Rodger J (2015) Reliability of VEP recordings using chronically implanted screw electrodes in mice. Transl Vis Sci Technol 4:15PubMedPubMedCentralCrossRef
5.
go back to reference Charng J, Nguyen CT, He Z, Dang TM, Vingrys AJ, Fish RL, Gurrell R, Brain P, Bui BV (2013) Conscious wireless electroretinogram and visual evoked potentials in rats. PLoS ONE 8(9):e74172PubMedPubMedCentralCrossRef Charng J, Nguyen CT, He Z, Dang TM, Vingrys AJ, Fish RL, Gurrell R, Brain P, Bui BV (2013) Conscious wireless electroretinogram and visual evoked potentials in rats. PLoS ONE 8(9):e74172PubMedPubMedCentralCrossRef
6.
go back to reference Sato S, Sugimoto S, Chiba S (1982) An electrophysiological method for detecting visual toxicity in unrestrained rats. Jpn J Pharmacol 32(3):489–497PubMedCrossRef Sato S, Sugimoto S, Chiba S (1982) An electrophysiological method for detecting visual toxicity in unrestrained rats. Jpn J Pharmacol 32(3):489–497PubMedCrossRef
7.
go back to reference Sagdullaev BT, DeMarco PJ, McCall MA (2004) Improved contact lens electrode for corneal ERG recordings in mice. Doc Ophthalmol 108(3):181–184PubMedCrossRef Sagdullaev BT, DeMarco PJ, McCall MA (2004) Improved contact lens electrode for corneal ERG recordings in mice. Doc Ophthalmol 108(3):181–184PubMedCrossRef
8.
go back to reference Brandli A, Stone J (2015) Using the electroretinogram to assess function in the rodent retina and the protective effects of remote limb ischemic preconditioning. J Vis Exp 100:e52658 Brandli A, Stone J (2015) Using the electroretinogram to assess function in the rodent retina and the protective effects of remote limb ischemic preconditioning. J Vis Exp 100:e52658
9.
go back to reference Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis GC, Leocani L, Andreazzoli M, Broccoli V (2018) Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 27:761–779PubMedCrossRef Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis GC, Leocani L, Andreazzoli M, Broccoli V (2018) Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 27:761–779PubMedCrossRef
10.
go back to reference Santangelo R, Castoldi V, Cursi M, Chaabane L, Comi G, Leocani L (2015) Epidermal recordings can be used for preclinical functional assessment of visual pathways. Eur J Neurol 22:427CrossRef Santangelo R, Castoldi V, Cursi M, Chaabane L, Comi G, Leocani L (2015) Epidermal recordings can be used for preclinical functional assessment of visual pathways. Eur J Neurol 22:427CrossRef
11.
go back to reference Santangelo R, Castoldi V, D’Isa R, Marenna S, Huang SC, Cursi M, Comi G, Leocani L (2018) Visual evoked potentials can be reliably recorded using noninvasive epidermal electrodes in the anesthetized rat. Doc Ophthalmol 136(3):165–175PubMedCrossRef Santangelo R, Castoldi V, D’Isa R, Marenna S, Huang SC, Cursi M, Comi G, Leocani L (2018) Visual evoked potentials can be reliably recorded using noninvasive epidermal electrodes in the anesthetized rat. Doc Ophthalmol 136(3):165–175PubMedCrossRef
12.
go back to reference Marenna S, Castoldi V, d’Isa R, Marco C, Comi G, Leocani L (2019) Semi-invasive and non-invasive recording of visual evoked potentials in mice. Doc Ophthalmol 138(3):169–179PubMedCrossRef Marenna S, Castoldi V, d’Isa R, Marco C, Comi G, Leocani L (2019) Semi-invasive and non-invasive recording of visual evoked potentials in mice. Doc Ophthalmol 138(3):169–179PubMedCrossRef
13.
go back to reference Castoldi V, Marenna S, Santangelo R, d’Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L (2018) Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the Dark Agouti rat. J Neuroimmunol 325:1–9PubMedCrossRef Castoldi V, Marenna S, Santangelo R, d’Isa R, Cursi M, Chaabane L, Quattrini A, Comi G, Leocani L (2018) Optic nerve involvement in experimental autoimmune encephalomyelitis to homologous spinal cord homogenate immunization in the Dark Agouti rat. J Neuroimmunol 325:1–9PubMedCrossRef
14.
go back to reference Castoldi V, Marenna S, d’Isa R, Huang SC, De Battista D, Chirizzi C, Chaabane L, Kumar D, Boschert U, Comi G, Leocani L (2020) Non-invasive visual evoked potentials to assess optic nerve involvement in the Dark Agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Path 30(1):137–150CrossRef Castoldi V, Marenna S, d’Isa R, Huang SC, De Battista D, Chirizzi C, Chaabane L, Kumar D, Boschert U, Comi G, Leocani L (2020) Non-invasive visual evoked potentials to assess optic nerve involvement in the Dark Agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Path 30(1):137–150CrossRef
15.
go back to reference Kaufman D, Celesia GG (1985) Simultaneous recording of pattern electroretinogram and visual evoked responses in neuro-ophthalmologic disorders. Neurology 35(5):644–651PubMedCrossRef Kaufman D, Celesia GG (1985) Simultaneous recording of pattern electroretinogram and visual evoked responses in neuro-ophthalmologic disorders. Neurology 35(5):644–651PubMedCrossRef
16.
go back to reference Celesia GG, Kaufman D (1985) Pattern ERGs and visual evoked potentials in maculopathies and optic nerve diseases. Investig Ophthalmol Vis Sci 26(5):726–735 Celesia GG, Kaufman D (1985) Pattern ERGs and visual evoked potentials in maculopathies and optic nerve diseases. Investig Ophthalmol Vis Sci 26(5):726–735
17.
go back to reference Celesia GG, Kaufman D, Cone SB (1986) Simultaneous recording of pattern electroretinography and visual evoked potentials in multiple sclerosis. A method to separate demyelination from axonal damage to the optic nerve. Arch Neurol 43(12):1247–1252PubMedCrossRef Celesia GG, Kaufman D, Cone SB (1986) Simultaneous recording of pattern electroretinography and visual evoked potentials in multiple sclerosis. A method to separate demyelination from axonal damage to the optic nerve. Arch Neurol 43(12):1247–1252PubMedCrossRef
18.
go back to reference Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 49(11):1280–1287PubMedPubMedCentralCrossRef Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 49(11):1280–1287PubMedPubMedCentralCrossRef
19.
go back to reference Kriss A, Russell-Eggitt I (1992) Electrophysiological assessment of visual pathway function in infants. Eye (Lond) 6(Pt 2):145–153CrossRef Kriss A, Russell-Eggitt I (1992) Electrophysiological assessment of visual pathway function in infants. Eye (Lond) 6(Pt 2):145–153CrossRef
20.
go back to reference d’Isa R, Brambilla R, Fasano S (2014) Behavioral methods for the study of the ras–ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests. Methods Mol Biol 1120:131–156PubMedCrossRef d’Isa R, Brambilla R, Fasano S (2014) Behavioral methods for the study of the ras–ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests. Methods Mol Biol 1120:131–156PubMedCrossRef
21.
go back to reference Cambiaghi M, Teneud L, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L (2011) Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience 185:161–165PubMedCrossRef Cambiaghi M, Teneud L, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L (2011) Flash visual evoked potentials in mice can be modulated by transcranial direct current stimulation. Neuroscience 185:161–165PubMedCrossRef
22.
go back to reference Monnier M, Jeanneret RL (1947) Contrôle objectif de la conductibilité des voies optiques centrales par l’électro-rétinographie et l’électro-encéphalographie combines. Ophthalmologica 113:1–11PubMedCrossRef Monnier M, Jeanneret RL (1947) Contrôle objectif de la conductibilité des voies optiques centrales par l’électro-rétinographie et l’électro-encéphalographie combines. Ophthalmologica 113:1–11PubMedCrossRef
23.
go back to reference Monnier M (1948) Mesure du temps rétinocortical à partir des potentiels corticaux évoqués par stimulation lumineuse chez l’homme. Helvet Physiol et Pharmac Acta 6(C):61–62 Monnier M (1948) Mesure du temps rétinocortical à partir des potentiels corticaux évoqués par stimulation lumineuse chez l’homme. Helvet Physiol et Pharmac Acta 6(C):61–62
24.
go back to reference Tomiyama Y, Fujita K, Nishiguchi KM, Tokashiki N, Daigaku R, Tabata K, Sugano E, Tomita H, Nakazawa T (2016) Measurement of electroretinograms and visually evoked potentials in awake moving mice. PLoS ONE 11(6):e0156927PubMedPubMedCentralCrossRef Tomiyama Y, Fujita K, Nishiguchi KM, Tokashiki N, Daigaku R, Tabata K, Sugano E, Tomita H, Nakazawa T (2016) Measurement of electroretinograms and visually evoked potentials in awake moving mice. PLoS ONE 11(6):e0156927PubMedPubMedCentralCrossRef
25.
go back to reference Lopez L, Brusa A, Fadda A, Loizzo S, Martinangeli A, Sannita WG, Loizzo A (2002) Modulation of flash stimulation intensity and frequency: effects on visual evoked potentials and oscillatory potentials recorded in awake, freely moving mice. Behav Brain Res 131:105–114PubMedCrossRef Lopez L, Brusa A, Fadda A, Loizzo S, Martinangeli A, Sannita WG, Loizzo A (2002) Modulation of flash stimulation intensity and frequency: effects on visual evoked potentials and oscillatory potentials recorded in awake, freely moving mice. Behav Brain Res 131:105–114PubMedCrossRef
26.
go back to reference Loizzo S, Lopez L, Pedrazzo G, Loizzo A (2002) A neurophysiological approach to effects induced by accelerated particles on the central nervous system in mice. Ann Ist Super Sanita 38:425–428PubMed Loizzo S, Lopez L, Pedrazzo G, Loizzo A (2002) A neurophysiological approach to effects induced by accelerated particles on the central nervous system in mice. Ann Ist Super Sanita 38:425–428PubMed
27.
go back to reference Szabó-Salfay O, Pálhalmi J, Szatmári E, Barabás P, Szilágyi N, Juhász G (2001) The electroretinogram and visual evoked potential of freely moving rats. Brain Res Bull 56:7–14PubMedCrossRef Szabó-Salfay O, Pálhalmi J, Szatmári E, Barabás P, Szilágyi N, Juhász G (2001) The electroretinogram and visual evoked potential of freely moving rats. Brain Res Bull 56:7–14PubMedCrossRef
28.
go back to reference Guarino I, Loizzo S, Lopez L, Fadda A, Loizzo A (2004) A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies. Neural Plast 11(3–4):241–250PubMedPubMedCentralCrossRef Guarino I, Loizzo S, Lopez L, Fadda A, Loizzo A (2004) A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies. Neural Plast 11(3–4):241–250PubMedPubMedCentralCrossRef
29.
go back to reference Tsai TI, Bui BV, Vingrys AJ (2014) Effect of acute intraocular pressure challenge on rat retinal and cortical function. Investig Ophthalmol Vis Sci 55(2):1067–1077CrossRef Tsai TI, Bui BV, Vingrys AJ (2014) Effect of acute intraocular pressure challenge on rat retinal and cortical function. Investig Ophthalmol Vis Sci 55(2):1067–1077CrossRef
30.
go back to reference Nguyen CT, Tsai TI, He Z, Vingrys AJ, Lee PY, Bui BV (2016) Simultaneous recording of electroretinography and visual evoked potentials in anesthetized rats. J Vis Exp 113:e54158 Nguyen CT, Tsai TI, He Z, Vingrys AJ, Lee PY, Bui BV (2016) Simultaneous recording of electroretinography and visual evoked potentials in anesthetized rats. J Vis Exp 113:e54158
31.
go back to reference Klein RJ, Proctor SE, Boudreault MA, Turczyn KM (2002) Healthy People 2010 criteria for data suppression. Stat Notes 24:1–12 Klein RJ, Proctor SE, Boudreault MA, Turczyn KM (2002) Healthy People 2010 criteria for data suppression. Stat Notes 24:1–12
32.
go back to reference National Center for Health Statistics (2017) Health, United States, 2016: with chartbook on long-term trends in health. NCHS, Hyattsville National Center for Health Statistics (2017) Health, United States, 2016: with chartbook on long-term trends in health. NCHS, Hyattsville
33.
go back to reference Australian Institute of Health and Welfare (2018) Australia’s health 2018. Australia’s health series no. 16. AUS 221. AIHW, Canberra Australian Institute of Health and Welfare (2018) Australia’s health 2018. Australia’s health series no. 16. AUS 221. AIHW, Canberra
34.
go back to reference Office for National Statistics, Department for Environment, Food and Rural Affairs (2017) Family food 2015. DEFRA, London Office for National Statistics, Department for Environment, Food and Rural Affairs (2017) Family food 2015. DEFRA, London
35.
go back to reference Chaychi S, Polosa A, Lachapelle P (2015) Differences in retinal structure and function between aging male and female sprague-dawley rats are strongly influenced by the estrus cycle. PLoS ONE 10:e0136056PubMedPubMedCentralCrossRef Chaychi S, Polosa A, Lachapelle P (2015) Differences in retinal structure and function between aging male and female sprague-dawley rats are strongly influenced by the estrus cycle. PLoS ONE 10:e0136056PubMedPubMedCentralCrossRef
36.
go back to reference Varela Lopez O, Alvarez Vazquez JC, Gonzalez Cantalapiedra A, Rosolen SG (2010) Effects of hypercapnia on the electroretinogram in sevoflurane and isoflurane anaesthetized dogs. Doc Ophthalmol 121:9–20PubMedCrossRef Varela Lopez O, Alvarez Vazquez JC, Gonzalez Cantalapiedra A, Rosolen SG (2010) Effects of hypercapnia on the electroretinogram in sevoflurane and isoflurane anaesthetized dogs. Doc Ophthalmol 121:9–20PubMedCrossRef
37.
go back to reference Georgiou AL, Guo L, Francesca Cordeiro M, Salt TE (2014) Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma. Curr Eye Res 39(5):472–486PubMedCrossRef Georgiou AL, Guo L, Francesca Cordeiro M, Salt TE (2014) Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma. Curr Eye Res 39(5):472–486PubMedCrossRef
38.
go back to reference Murrell JC, Waters D, Johnson CB (2008) Comparative effects of halothane, isoflurane, sevoflurane and desflurane on the electroencephalogram of the rat. Lab Anim 42:161–170PubMedCrossRef Murrell JC, Waters D, Johnson CB (2008) Comparative effects of halothane, isoflurane, sevoflurane and desflurane on the electroencephalogram of the rat. Lab Anim 42:161–170PubMedCrossRef
39.
go back to reference You Y, Gupta VK, Chitranshi N, Reedman B, Klistorner A, Graham SL (2015) Visual evoked potential recording in a rat model of experimental optic nerve demyelination. J Vis Exp 101:e52934 You Y, Gupta VK, Chitranshi N, Reedman B, Klistorner A, Graham SL (2015) Visual evoked potential recording in a rat model of experimental optic nerve demyelination. J Vis Exp 101:e52934
40.
go back to reference Mesentier-Louro LA, De Nicolò S, Rosso P, De Vitis LA, Castoldi V, Leocani L, Mendez-Otero R, Santiago MF, Tirassa P, Rama P, Lambiase A (2017) Time-dependent nerve growth factor signaling changes in the rat retina during optic nerve crush-induced degeneration of retinal ganglion cells. Int J Mol Sci 18(1):98PubMedCentralCrossRef Mesentier-Louro LA, De Nicolò S, Rosso P, De Vitis LA, Castoldi V, Leocani L, Mendez-Otero R, Santiago MF, Tirassa P, Rama P, Lambiase A (2017) Time-dependent nerve growth factor signaling changes in the rat retina during optic nerve crush-induced degeneration of retinal ganglion cells. Int J Mol Sci 18(1):98PubMedCentralCrossRef
41.
go back to reference Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2002) Visual retinocortical function in dementia of the Alzheimer type. Gerontology 48(4):197–203PubMedCrossRef Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2002) Visual retinocortical function in dementia of the Alzheimer type. Gerontology 48(4):197–203PubMedCrossRef
42.
go back to reference Krasodomska K, Lubiński W, Potemkowski A, Honczarenko K (2010) Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease. Doc Ophthalmol 121(2):111–121PubMedPubMedCentralCrossRef Krasodomska K, Lubiński W, Potemkowski A, Honczarenko K (2010) Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease. Doc Ophthalmol 121(2):111–121PubMedPubMedCentralCrossRef
43.
go back to reference Parisi V, Gallinaro G, Ziccardi L, Coppola G (2008) Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol 15(8):839–845PubMedCrossRef Parisi V, Gallinaro G, Ziccardi L, Coppola G (2008) Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol 15(8):839–845PubMedCrossRef
44.
go back to reference Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106PubMedPubMedCentralCrossRef Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106PubMedPubMedCentralCrossRef
45.
go back to reference Balatoni B, Storch MK, Swoboda EM, Schönborn V, Koziel A, Lambrou GN, Hiestand PC, Weissert R, Foster CA (2007) FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res Bull 74(5):307–316PubMedCrossRef Balatoni B, Storch MK, Swoboda EM, Schönborn V, Koziel A, Lambrou GN, Hiestand PC, Weissert R, Foster CA (2007) FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res Bull 74(5):307–316PubMedCrossRef
Metadata
Title
A new electrophysiological non-invasive method to assess retinocortical conduction time in the Dark Agouti rat through the simultaneous recording of electroretinogram and visual evoked potential
Authors
Raffaele d’Isa
Valerio Castoldi
Silvia Marenna
Roberto Santangelo
Giancarlo Comi
Letizia Leocani
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 3/2020
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-019-09741-3

Other articles of this Issue 3/2020

Documenta Ophthalmologica 3/2020 Go to the issue