Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2019

01-04-2019 | Glaucoma | Original Research Article

Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma

Authors: Linlin Li, Jie Qin, Tingting Fu, Jiaxiang Shen

Published in: Documenta Ophthalmologica | Issue 2/2019

Login to get access

Abstract

Purpose

Glaucoma is a common chronic neurodegenerative disease, which could lead to visual loss. In this study, we aimed to investigate whether fisetin, a natural flavone with anti-inflammatory and antioxidant properties, is able to alleviate glaucoma.

Methods

We employed a DBA/2J mouse model which was treated with or without fisetin. Pattern electroretinogram (P-ERG), visual evoked potentials (VEPs) and intraocular pressure (IOP) were evaluated. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) were used to measure the expression levels of TNF-α, IL-1β and IL-6. Western blotting was performed to assess the activation of nuclear factor kappa-B (NF-κB).

Results

We found that DBA/2J mice treated with fisetin (10-30 mg/kg) showed improved P-ERG and VEP amplitudes and reduced IOP compared to untreated DBA/2J mice. In addition, there were more survived retinal ganglion cells (RGCs) and less activated microglia in fisetin-treated DBA/2J mice than those in untreated mice. Furthermore, secreted protein levels and mRNA levels of TNF-α, IL-1β and IL-6 were significantly repressed by fisetin. The phosphorylated p65 level in the nucleus was dramatically reduced in fisetin-treated mice compared to it in untreated mice. Our results demonstrate that fisetin may exert its function through regulating cytokine productions and inhibiting NF-κB activation in the retina.

Conclusion

In conclusion, fisetin is able to promote the visual functions of DBA/2J mice by inhibiting NF-κB activation.
Literature
3.
go back to reference Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SWM (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Investig 121:1429–1444. https://doi.org/10.1172/Jci44646 CrossRefPubMed Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SWM (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Investig 121:1429–1444. https://​doi.​org/​10.​1172/​Jci44646 CrossRefPubMed
11.
go back to reference Zhang HF, Lin Y, Li JH, Pober JS, Min W (2007) RIP1-mediated AIP1 phosphorylation at a 14-3-3-binding site is critical for tumor necrosis factor-induced ASK1-JNK/p38 activation. J Biol Chem 282:14788–14796CrossRef Zhang HF, Lin Y, Li JH, Pober JS, Min W (2007) RIP1-mediated AIP1 phosphorylation at a 14-3-3-binding site is critical for tumor necrosis factor-induced ASK1-JNK/p38 activation. J Biol Chem 282:14788–14796CrossRef
14.
go back to reference Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA (2010) ProNGF induces TNFα-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci 107:3817–3822CrossRef Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA (2010) ProNGF induces TNFα-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci 107:3817–3822CrossRef
15.
go back to reference Funayama T, Ishikawa K, Ohtake Y, Tanino T, Kurosaka D, Kimura I, Suzuki K, Ideta H, Nakamoto K, Yasuda N, Fujimaki T, Murakami A, Asaoka R, Hotta Y, Tanihara H, Kanamoto T, Mishima H, Fukuchi T, Abe H, Iwata T, Shimada N, Kudoh J, Shimizu N, Mashima Y (2004) Variants in optineurin gene and their association with tumor necrosis factor-alpha polymorphisms in Japanese patients with glaucoma. Invest Ophthalmol Vis Sci 45:4359–4367. https://doi.org/10.1167/iovs.03-1403 CrossRefPubMed Funayama T, Ishikawa K, Ohtake Y, Tanino T, Kurosaka D, Kimura I, Suzuki K, Ideta H, Nakamoto K, Yasuda N, Fujimaki T, Murakami A, Asaoka R, Hotta Y, Tanihara H, Kanamoto T, Mishima H, Fukuchi T, Abe H, Iwata T, Shimada N, Kudoh J, Shimizu N, Mashima Y (2004) Variants in optineurin gene and their association with tumor necrosis factor-alpha polymorphisms in Japanese patients with glaucoma. Invest Ophthalmol Vis Sci 45:4359–4367. https://​doi.​org/​10.​1167/​iovs.​03-1403 CrossRefPubMed
16.
go back to reference Pal HC, Athar M, Elmets CA, Afaq F (2015) Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3 K/AKT/NFκB signaling pathways in SKH-1 hairless mice. Photochem Photobiol 91:225–234CrossRef Pal HC, Athar M, Elmets CA, Afaq F (2015) Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3 K/AKT/NFκB signaling pathways in SKH-1 hairless mice. Photochem Photobiol 91:225–234CrossRef
20.
go back to reference Goh FY, Upton N, Guan S, Cheng C, Shanmugam MK, Sethi G, Leung BP, Wong WF (2012) Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB. Eur J Pharmacol 679:109–116CrossRef Goh FY, Upton N, Guan S, Cheng C, Shanmugam MK, Sethi G, Leung BP, Wong WF (2012) Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB. Eur J Pharmacol 679:109–116CrossRef
22.
go back to reference Gustafson E, Silberschmidt A, Esguerra M, Miller R (2013) Recording and manipulation of the pattern electroretinogram in a mouse eyecup preparation. Investig Ophthalmol Vis Sci 54:6132 Gustafson E, Silberschmidt A, Esguerra M, Miller R (2013) Recording and manipulation of the pattern electroretinogram in a mouse eyecup preparation. Investig Ophthalmol Vis Sci 54:6132
28.
go back to reference Bosco A, Inman DM, Steele MR, Wu GM, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446. https://doi.org/10.1167/iovs.07-1337 CrossRefPubMed Bosco A, Inman DM, Steele MR, Wu GM, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446. https://​doi.​org/​10.​1167/​iovs.​07-1337 CrossRefPubMed
29.
go back to reference Neufeld AH (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 117:1050–1056CrossRef Neufeld AH (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 117:1050–1056CrossRef
31.
go back to reference Neufeld AH, Liu B (2003) Glaucomatous optic neuropathy: when glia misbehave. Neurosci 9:485–495 Neufeld AH, Liu B (2003) Glaucomatous optic neuropathy: when glia misbehave. Neurosci 9:485–495
32.
go back to reference Sobrado-Calvo P, Vidal-Sanz M, Villegas-Pérez MP (2007) Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol 501:866–878CrossRef Sobrado-Calvo P, Vidal-Sanz M, Villegas-Pérez MP (2007) Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol 501:866–878CrossRef
35.
go back to reference Al-Gayyar M, Elsherbiny N (2013) Contribution of TNF-α to the development of retinal neurodegenerative disorders. Eur Cytokine Netw 24:27–36PubMed Al-Gayyar M, Elsherbiny N (2013) Contribution of TNF-α to the development of retinal neurodegenerative disorders. Eur Cytokine Netw 24:27–36PubMed
36.
go back to reference Balaiya S, Edwards J, Tillis T, Khetpal V, Chalam KV (2011) Tumor necrosis factor-alpha (TNF-α) levels in aqueous humor of primary open angle glaucoma. Clin Ophthalmol 5:553CrossRef Balaiya S, Edwards J, Tillis T, Khetpal V, Chalam KV (2011) Tumor necrosis factor-alpha (TNF-α) levels in aqueous humor of primary open angle glaucoma. Clin Ophthalmol 5:553CrossRef
37.
go back to reference Tezel G (2008) TNF-α signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421CrossRef Tezel G (2008) TNF-α signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421CrossRef
38.
go back to reference Wilson GN, Inman DM, Dengler-Crish CM, Smith MA, Crish SD (2015) Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma. J Neuroinflammation 12:176CrossRef Wilson GN, Inman DM, Dengler-Crish CM, Smith MA, Crish SD (2015) Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma. J Neuroinflammation 12:176CrossRef
39.
go back to reference H-l Peng, Huang W-C, S-c Cheng, Liou C-J (2018) Fisetin inhibits the generation of inflammatory mediators in interleukin-1β–induced human lung epithelial cells by suppressing the Nf-κb and Erk1/2 pathways. Int Immunopharmacol 60:202–210CrossRef H-l Peng, Huang W-C, S-c Cheng, Liou C-J (2018) Fisetin inhibits the generation of inflammatory mediators in interleukin-1β–induced human lung epithelial cells by suppressing the Nf-κb and Erk1/2 pathways. Int Immunopharmacol 60:202–210CrossRef
40.
go back to reference Sahu BD, Kumar JM, Sistla R (2016) Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: relevance of NF-κB signaling. J Nutr Biochem 28:171–182CrossRef Sahu BD, Kumar JM, Sistla R (2016) Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: relevance of NF-κB signaling. J Nutr Biochem 28:171–182CrossRef
41.
go back to reference Seo S-H, Jeong G-S (2015) Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3 K/AKT/Nrf-2-mediated heme oxygenase-1 expression. Int Immunopharmacol 29:246–253CrossRef Seo S-H, Jeong G-S (2015) Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3 K/AKT/Nrf-2-mediated heme oxygenase-1 expression. Int Immunopharmacol 29:246–253CrossRef
44.
go back to reference Li GR, Luna C, Liton PB, Navarro I, Epstein DL, Gonzalez P (2007) Sustained stress response after oxidative stress in trabecular meshwork cells. Mol Vis 13:2282–2288PubMedPubMedCentral Li GR, Luna C, Liton PB, Navarro I, Epstein DL, Gonzalez P (2007) Sustained stress response after oxidative stress in trabecular meshwork cells. Mol Vis 13:2282–2288PubMedPubMedCentral
47.
go back to reference Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A (2016) Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell Mol Neurobiol 36:883–892CrossRef Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A (2016) Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell Mol Neurobiol 36:883–892CrossRef
48.
go back to reference Feng G, Z-y Jiang, Sun B, Fu J, T-z Li (2016) Fisetin alleviates lipopolysaccharide-induced acute lung injury via TLR4-mediated NF-κB signaling pathway in rats. Inflammation 39:148–157CrossRef Feng G, Z-y Jiang, Sun B, Fu J, T-z Li (2016) Fisetin alleviates lipopolysaccharide-induced acute lung injury via TLR4-mediated NF-κB signaling pathway in rats. Inflammation 39:148–157CrossRef
Metadata
Title
Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma
Authors
Linlin Li
Jie Qin
Tingting Fu
Jiaxiang Shen
Publication date
01-04-2019
Publisher
Springer Berlin Heidelberg
Keyword
Glaucoma
Published in
Documenta Ophthalmologica / Issue 2/2019
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-019-09676-9

Other articles of this Issue 2/2019

Documenta Ophthalmologica 2/2019 Go to the issue