Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2018

01-10-2018 | Original Research Article

Transplantation of rat embryonic stem cell-derived retinal cells restores visual function in the Royal College of Surgeons rats

Authors: Hongxi Wu, Jia Li, Xinbang Mao, Guodong Li, Lin Xie, Zhipeng You

Published in: Documenta Ophthalmologica | Issue 2/2018

Login to get access

Abstract

Aim of study

To evaluate the feasibility of transplantation of embryonic stem cell (ESC)-derived retinal cells in the treatment of retinal degeneration.

Materials and methods

Rat ESCs were isolated and induced into retinal progenitor cells (RPCs) in vitro, which were subsequently induced into retinal pigment epithelium cells (RPEs) and photoreceptors (PRCs). All cells were identified by Western blot detection of their specific markers. RPEs and PRCs were, respectively, injected into the retina of Royal College of Surgeons (RCSs) rats. Control group was injected with PBS. Post-transplantation visual function was determined by electroretinography (ERG). The histology of the whole eye was compared by H&E staining.

Results

RPEs and PRCs were successfully derived from rat ESCs through the two-step differentiation as indicated by the presence of ESC- (Oct-3/4, Nanog, TRA-1-60 and TRA-1-81), RPC- (Rx, Mitf, Pax6 and Chx10), RPE- (RPE65 and keratin) and PRC-specific markers (blue opsin, red/green opsin, recoverin and rhodopsin) in Western blot. The amplitude of ERG a- and b-wave in RPE- and PRC-transplanted groups at week 2 and 10 after transplantation was markedly higher compared with PBS controls. Retinal injury and vascular stress response was not detected in any of the RCS rats after transplantation.

Conclusion

The developed stepwise protocol can derive retinal cells from ESCs. Transplantation of these retinal cells can restore visual function of RCS rats. Our study provides evidence for potential clinical application of ESC-based cell therapy for retinal degeneration.
Literature
1.
3.
go back to reference Berson EL et al (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–772CrossRefPubMed Berson EL et al (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–772CrossRefPubMed
4.
go back to reference Berson EL et al (2004) Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol 122:1306–1314CrossRefPubMed Berson EL et al (2004) Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol 122:1306–1314CrossRefPubMed
5.
go back to reference Jacobson SG et al (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24CrossRefPubMed Jacobson SG et al (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24CrossRefPubMed
6.
go back to reference Bainbridge JW et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239CrossRefPubMed Bainbridge JW et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239CrossRefPubMed
8.
go back to reference Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332CrossRefPubMed Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332CrossRefPubMed
9.
go back to reference Binder S, Krebs I, Hilgers RD et al (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45:4151–4160CrossRefPubMed Binder S, Krebs I, Hilgers RD et al (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45:4151–4160CrossRefPubMed
10.
go back to reference MacLaren RE, Bird AC, Sathia PJ, Aylward GW (2005) Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology 112:2081–2087CrossRefPubMed MacLaren RE, Bird AC, Sathia PJ, Aylward GW (2005) Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology 112:2081–2087CrossRefPubMed
11.
go back to reference Aisenbrey S, Lafaut BA, Szurman P et al (2006) Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol 124:183–188CrossRefPubMed Aisenbrey S, Lafaut BA, Szurman P et al (2006) Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol 124:183–188CrossRefPubMed
12.
go back to reference Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79CrossRefPubMedPubMedCentral Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79CrossRefPubMedPubMedCentral
13.
go back to reference Assawachananont J et al (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep 2:662–674CrossRef Assawachananont J et al (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep 2:662–674CrossRef
14.
go back to reference Lamba DA, Karl MO, Ware CB et al (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774CrossRefPubMed Lamba DA, Karl MO, Ware CB et al (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774CrossRefPubMed
15.
go back to reference Meyer JS, Shearer RL, Capowski EE et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106:16698–16703CrossRefPubMed Meyer JS, Shearer RL, Capowski EE et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 106:16698–16703CrossRefPubMed
16.
go back to reference Kicic A, Shen WY, Wilson AS et al (2003) Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 23:7742–7749CrossRefPubMed Kicic A, Shen WY, Wilson AS et al (2003) Differentiation of marrow stromal cells into photoreceptors in the rat eye. J Neurosci 23:7742–7749CrossRefPubMed
17.
go back to reference Liu Y, Gao L, Zuba-Surma EK et al (2009) Identification of small Sca-1(+), Lin(−), CD45(−) multipotential cells in the neonatal murine retina. Exp Hematol 37:1096–1107CrossRefPubMed Liu Y, Gao L, Zuba-Surma EK et al (2009) Identification of small Sca-1(+), Lin(−), CD45(−) multipotential cells in the neonatal murine retina. Exp Hematol 37:1096–1107CrossRefPubMed
18.
go back to reference Klassen H, Kiilgaard JF, Zahir T et al (2007) Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells 25:1222–1230CrossRefPubMed Klassen H, Kiilgaard JF, Zahir T et al (2007) Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells 25:1222–1230CrossRefPubMed
19.
go back to reference Qu Z, Guan Y, Cui L et al (2015) Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration. Stem Cell Res Ther 6:219CrossRefPubMedPubMedCentral Qu Z, Guan Y, Cui L et al (2015) Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration. Stem Cell Res Ther 6:219CrossRefPubMedPubMedCentral
21.
go back to reference Schwartz SD, Hubschman JP, Heilwell G et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720CrossRefPubMed Schwartz SD, Hubschman JP, Heilwell G et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720CrossRefPubMed
22.
go back to reference Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516CrossRefPubMed Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516CrossRefPubMed
23.
go back to reference Zhang J, Taylor RJ, Torre AL et al (2015) Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev Biol 403:128–138CrossRefPubMedPubMedCentral Zhang J, Taylor RJ, Torre AL et al (2015) Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev Biol 403:128–138CrossRefPubMedPubMedCentral
24.
go back to reference Olivares AM, Han Y, Soto D et al (2017) Corrigendum to “The nuclear hormone receptor Nr2c1 (Tr2) is a critical regulator of early retina cell pattering” [Dev. Biol. 16 (2017) 30797-7]. Dev Biol 429:370 Olivares AM, Han Y, Soto D et al (2017) Corrigendum to “The nuclear hormone receptor Nr2c1 (Tr2) is a critical regulator of early retina cell pattering” [Dev. Biol. 16 (2017) 30797-7]. Dev Biol 429:370
25.
go back to reference Ikeda H et al (2005) Generation of Rx +/Pax6 + neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci USA 102:11331–11336CrossRefPubMed Ikeda H et al (2005) Generation of Rx +/Pax6 + neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci USA 102:11331–11336CrossRefPubMed
26.
go back to reference D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651CrossRefPubMed D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651CrossRefPubMed
27.
go back to reference LaVail MM (2001) Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog Brain Res 131:617–627CrossRefPubMed LaVail MM (2001) Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog Brain Res 131:617–627CrossRefPubMed
28.
go back to reference Loewenstein JI, Montezuma SR, Rizzo JF 3rd (2004) Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch Ophthalmol 122:587–596CrossRefPubMed Loewenstein JI, Montezuma SR, Rizzo JF 3rd (2004) Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy. Arch Ophthalmol 122:587–596CrossRefPubMed
Metadata
Title
Transplantation of rat embryonic stem cell-derived retinal cells restores visual function in the Royal College of Surgeons rats
Authors
Hongxi Wu
Jia Li
Xinbang Mao
Guodong Li
Lin Xie
Zhipeng You
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 2/2018
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-018-9648-8

Other articles of this Issue 2/2018

Documenta Ophthalmologica 2/2018 Go to the issue