Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2014

Open Access 01-12-2014 | Original Research Article

Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array

Authors: Yelena Krakova, Hadi Tajalli, Sanitta Thongpang, Zahra Derafshi, Tamas Ban, Safa Rahmani, Ashley N. Selner, Amani Al-Tarouti, Justin C. Williams, John R. Hetling

Published in: Documenta Ophthalmologica | Issue 3/2014

Login to get access

Abstract

Purpose

It has been known for several decades that the magnitude of the corneal electroretinogram (ERG) varies with position on the eye surface, especially in the presence of focal or asymmetric stimuli or retinal lesions. However, this phenomenon has not been well-characterized using simultaneous measurements at multiple locations on the cornea. This work provides the first characterization of spatial differences in the ERG across the rat cornea.

Methods

A contact lens electrode array was employed to record ERG potentials at 25 corneal locations simultaneously following brief full-field flash stimuli in normally sighted Long-Evans rats. These multi-electrode electroretinogram (meERG) responses were analyzed for spatial differences in a-wave and b-wave amplitudes and implicit times.

Results

Spatially distinct ERG potentials could be recorded reliably. Comparing relative amplitudes across the corneal locations suggested a slight non-uniform distribution when using full-field, near-saturating stimuli. Amplitudes of a- and b-waves were approximately 3 % lower in the inferior quadrant than in the superior quadrant of the cornea.

Conclusions

The present results comprise the start of the first normative meERG database for rat eyes and provide a basis for comparison of results from eyes with functional deficit. Robust measures of spatial differences in corneal potentials will also support optimization and validation of computational source models of the ERG. To fully utilize the information contained in the meERG data, a detailed understanding of the roles of the many determinants of local corneal potentials will eventually be required.
Literature
1.
go back to reference Xu X, Karwoski CJ (1994) Current source density (CSD) analysis of retinal field potentials. I. Methodological considerations and depth profiles. J Neurophysiol 72(1):84–95PubMed Xu X, Karwoski CJ (1994) Current source density (CSD) analysis of retinal field potentials. I. Methodological considerations and depth profiles. J Neurophysiol 72(1):84–95PubMed
2.
go back to reference Karwoski CJ, Xu X (1999) Current source-density analysis of light-evoked field potentials in rabbit retina. Vis Neurosci 16(2):369–377CrossRefPubMed Karwoski CJ, Xu X (1999) Current source-density analysis of light-evoked field potentials in rabbit retina. Vis Neurosci 16(2):369–377CrossRefPubMed
3.
go back to reference Doslak MJ, Plonsey R, Thomas CW (1981) Numerical solution of the bioelectric field of the e.r.g. Med Biol Eng Comput 19(2):149–156CrossRefPubMed Doslak MJ, Plonsey R, Thomas CW (1981) Numerical solution of the bioelectric field of the e.r.g. Med Biol Eng Comput 19(2):149–156CrossRefPubMed
5.
go back to reference Sundmark E (1958) Recording of the human electroretinogram with the contact glass: influence of the position of the recording electrode on the b-potential. Acta Ophthalmol 36(2):273–280CrossRef Sundmark E (1958) Recording of the human electroretinogram with the contact glass: influence of the position of the recording electrode on the b-potential. Acta Ophthalmol 36(2):273–280CrossRef
6.
go back to reference Sundmark E (1958) Recording of the human electroretinogram with the contact glass: III. Influence of the shape of the fluid layer between the glass and the eye on the electroretinogram. Acta Ophthalmol 36(5):917–928CrossRef Sundmark E (1958) Recording of the human electroretinogram with the contact glass: III. Influence of the shape of the fluid layer between the glass and the eye on the electroretinogram. Acta Ophthalmol 36(5):917–928CrossRef
7.
go back to reference Sundmark E (1959) The contact glass in human electroretinography. Acta Ophthalmol Suppl 52:3–40 Sundmark E (1959) The contact glass in human electroretinography. Acta Ophthalmol Suppl 52:3–40
8.
go back to reference Holland MG, Herr N (1964) The electroretinographic potential field localization of retinal lesions. Am J Ophtalmol 57:639–645CrossRef Holland MG, Herr N (1964) The electroretinographic potential field localization of retinal lesions. Am J Ophtalmol 57:639–645CrossRef
9.
go back to reference Job HM, Keating D, Evans AL, Parks S (1999) Three-dimensional electromagnetic model of human eye: advances towards the optimization of electroretinographic signal detection. Med Biol Eng Comput 37(6):710–719CrossRefPubMed Job HM, Keating D, Evans AL, Parks S (1999) Three-dimensional electromagnetic model of human eye: advances towards the optimization of electroretinographic signal detection. Med Biol Eng Comput 37(6):710–719CrossRefPubMed
10.
go back to reference Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77CrossRefPubMed Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77CrossRefPubMed
11.
go back to reference Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM (2012) ISCEV Standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124(1):1–13CrossRefPubMed Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM (2012) ISCEV Standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124(1):1–13CrossRefPubMed
12.
go back to reference Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG)—2012 update. Doc Ophthalmol 124(1):1–13CrossRef Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG)—2012 update. Doc Ophthalmol 124(1):1–13CrossRef
13.
go back to reference Krakau CET (1958) On the potential field of the rabbit electroretinogram. Acta Ophthalmol 36(II):183–207 Krakau CET (1958) On the potential field of the rabbit electroretinogram. Acta Ophthalmol 36(II):183–207
14.
go back to reference Davey KR, Thompson B, Wang SM, Koblasz A, Nation B (1988) Predicting distributed retinal source activity from ERG data—part I: field theoretical approach. IEEE Trans Biomed Eng 35(11):942–947CrossRefPubMed Davey KR, Thompson B, Wang SM, Koblasz A, Nation B (1988) Predicting distributed retinal source activity from ERG data—part I: field theoretical approach. IEEE Trans Biomed Eng 35(11):942–947CrossRefPubMed
15.
go back to reference van Schijndel NH, Thijssen JM, Oostendorp TF, Cuypers MHM, Huiskamp GJM (1997) The inverse problem in electroretinography: a study based on skin potentials and a realistic geometry model. IEEE Trans Biomed Eng 44(2):209–211CrossRefPubMed van Schijndel NH, Thijssen JM, Oostendorp TF, Cuypers MHM, Huiskamp GJM (1997) The inverse problem in electroretinography: a study based on skin potentials and a realistic geometry model. IEEE Trans Biomed Eng 44(2):209–211CrossRefPubMed
16.
go back to reference Cringle SJ, Alder VA (1987) The effect of a retinal lesion on the distribution of B wave potentials on the sclera. Curr Eye Res 6(9):1109–1114CrossRefPubMed Cringle SJ, Alder VA (1987) The effect of a retinal lesion on the distribution of B wave potentials on the sclera. Curr Eye Res 6(9):1109–1114CrossRefPubMed
17.
go back to reference He B, Lian J (2002) High-resolution spatio-temporal functional neuroimaging of brain activity. Crit Rev Biomed Eng 30(4–6):283–306CrossRefPubMed He B, Lian J (2002) High-resolution spatio-temporal functional neuroimaging of brain activity. Crit Rev Biomed Eng 30(4–6):283–306CrossRefPubMed
18.
go back to reference Han C, Liu Z, Zhang X, Pogwizd S, He B (2008) Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Tran Med Imaging 27(11):1622–1630CrossRef Han C, Liu Z, Zhang X, Pogwizd S, He B (2008) Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Tran Med Imaging 27(11):1622–1630CrossRef
19.
go back to reference Lyons JS, Severns ML (2007) Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography. Am J Ophthalmol 143(5):801–809CrossRefPubMed Lyons JS, Severns ML (2007) Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography. Am J Ophthalmol 143(5):801–809CrossRefPubMed
20.
go back to reference Lyons JS, Severns ML (2009) Using multifocal ERG ring ratios to detect and follow plaquenil retinal toxicity: a review: review of mfERG ring ratios in plaquenil toxicity. Doc Ophthalmol 118(1):29–36CrossRefPubMed Lyons JS, Severns ML (2009) Using multifocal ERG ring ratios to detect and follow plaquenil retinal toxicity: a review: review of mfERG ring ratios in plaquenil toxicity. Doc Ophthalmol 118(1):29–36CrossRefPubMed
21.
22.
go back to reference Salinas-Navarro M, Mayor-Torroglosa S, Jimenez-Lopez M, Aviles-Trigueros M, Holmes TM, Lund RD, Villegas-Perez MP, Vidal-Sanz M (2009) A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vis Res 49(1):115–126CrossRefPubMed Salinas-Navarro M, Mayor-Torroglosa S, Jimenez-Lopez M, Aviles-Trigueros M, Holmes TM, Lund RD, Villegas-Perez MP, Vidal-Sanz M (2009) A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vis Res 49(1):115–126CrossRefPubMed
23.
go back to reference Ortin-Martinez A, Jimenez-Lopez M, Nadal-Nicolas FM, Salinas-Navarro M, Alarcon-Martinez L, Sauve Y, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M (2010) Automated quantification and topographical distribution of the whole population of S- and L-cones in adult albino and pigmented rats. Investig Ophthalmol Vis Sci 51(6):3171–3183CrossRef Ortin-Martinez A, Jimenez-Lopez M, Nadal-Nicolas FM, Salinas-Navarro M, Alarcon-Martinez L, Sauve Y, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M (2010) Automated quantification and topographical distribution of the whole population of S- and L-cones in adult albino and pigmented rats. Investig Ophthalmol Vis Sci 51(6):3171–3183CrossRef
24.
go back to reference Danias J, Shen F, Goldblum D, Chen B, Ramos-Esteban J, Pados SM, Mittag T (2002) Cytoarchitecture of retinal ganglion cells in the rat. Investig Ophthalmol Vis Sci 43(3):587–594 Danias J, Shen F, Goldblum D, Chen B, Ramos-Esteban J, Pados SM, Mittag T (2002) Cytoarchitecture of retinal ganglion cells in the rat. Investig Ophthalmol Vis Sci 43(3):587–594
25.
go back to reference Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Investig Ophthalmol Vis Sci 43(5):1673–1685 Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Investig Ophthalmol Vis Sci 43(5):1673–1685
26.
go back to reference Sutter EE, Tran D (1992) The field topography of ERG components in man—I. The photopic luminance response. Vis Res 32(3):433–446CrossRefPubMed Sutter EE, Tran D (1992) The field topography of ERG components in man—I. The photopic luminance response. Vis Res 32(3):433–446CrossRefPubMed
Metadata
Title
Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array
Authors
Yelena Krakova
Hadi Tajalli
Sanitta Thongpang
Zahra Derafshi
Tamas Ban
Safa Rahmani
Ashley N. Selner
Amani Al-Tarouti
Justin C. Williams
John R. Hetling
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 3/2014
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-014-9459-5

Other articles of this Issue 3/2014

Documenta Ophthalmologica 3/2014 Go to the issue