Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2010

01-10-2010 | Original research article

Light- and dark-adapted electroretinograms (ERGs) and ocular pigmentation: comparison of brown- and blue-eyed cohorts

Authors: Abdlsaed Al Abdlseaed, Yvonne McTaggart, Thomas Ramage, Ruth Hamilton, Daphne L. McCulloch

Published in: Documenta Ophthalmologica | Issue 2/2010

Login to get access

Abstract

This study characterizes differences in human ERGs based on ocular pigmentation. Light- and dark-adapted luminance-response (LR) series for a-, b- and i-waves and light-adapted oscillatory potentials (OPs) were recorded in 14 healthy volunteers (7 blue-eyed Caucasians; 7 brown-eyed Asians, aged 20–22 years). Amplitude interpolations were by logistic growth (Naka-Rushton), Gaussian or the combined ‘photopic hill’ functions. Implicit times (IT) for dark-adapted a- and b-waves, and for light-adapted a-, b- and i-waves were earlier in the blue-eyed group than in the brown-eyed group across all flash strengths (P < 0.05). For dark-adapted ERGs, saturated a-wave amplitude was larger for blue eyes (397 vs. 318 μV, P < 0.05) as was the a-wave to strong flash (10 cd·s/m2; 357 vs. 293 μV, P < 0.05) and the b-wave to ISCEV standard 0.01 (354 vs. 238 μV, P < 0.05). Light-adapted b-waves for midrange flash stimuli were much larger for the blue-eyed group (photopic hill, Gaussian peak: 155 vs. 82 μV, P < 0.001) with no difference in saturated amplitudes. Similarly, interpolated i-wave amplitudes were larger (48 vs. 18 μV, P < 0.01). For a light-adapted 2.6 stimulus, a- and b-waves were larger for the blue-eyed group (52 vs. 39 μV; 209 vs. 133 μV, P < 0.01) as were OP4 and OP5 (37.2 vs. 15.6 μV; 47.5 vs. 22.2 μV, P < 0.01), but OP1-OP3 did not differ. ERGs have shorter ITs in people with blue irides than in those with dark pigmentation. Amplitude differences are highly non-linear and substantially larger from eyes with light pigmentation for components thought to be associated with the OFF retinal pathways.
Literature
1.
go back to reference Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118 (1):69–77 (www.iscev.org) Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118 (1):69–77 (www.​iscev.​org)
2.
go back to reference Wali N, Leguire LE (1992) Fundus pigmentation and the dark-adapted electroretinogram. Doc Ophthalmol 80(1):1–11CrossRefPubMed Wali N, Leguire LE (1992) Fundus pigmentation and the dark-adapted electroretinogram. Doc Ophthalmol 80(1):1–11CrossRefPubMed
3.
go back to reference Wali N, Leguire LE (1993) Fundus pigmentation and the electroretinographic luminance-response function. Doc Ophthalmol 84(1):61–69CrossRefPubMed Wali N, Leguire LE (1993) Fundus pigmentation and the electroretinographic luminance-response function. Doc Ophthalmol 84(1):61–69CrossRefPubMed
4.
go back to reference Krill AE, Lee GB (1963) The electroretinogram in albinos and carriers of the ocular albino trait. Arch Ophthalmol 69:32–38PubMed Krill AE, Lee GB (1963) The electroretinogram in albinos and carriers of the ocular albino trait. Arch Ophthalmol 69:32–38PubMed
5.
go back to reference Russell-Eggitt I, Kriss A, Taylor DS (1990) Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol 74(3):136–140CrossRefPubMed Russell-Eggitt I, Kriss A, Taylor DS (1990) Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol 74(3):136–140CrossRefPubMed
6.
go back to reference Nusinowitz S, Sarraf D (2008) Retinal function in X-linked ocular albinism (OA1). Curr Eye Res 33:789–803CrossRefPubMed Nusinowitz S, Sarraf D (2008) Retinal function in X-linked ocular albinism (OA1). Curr Eye Res 33:789–803CrossRefPubMed
8.
go back to reference Weiter JJ, Delori FC, Wing GL, Fitch KA (1985) Relationship of senile macular degeneration to ocular pigmentation. Am J Ophthalmol 99(2):185–187PubMed Weiter JJ, Delori FC, Wing GL, Fitch KA (1985) Relationship of senile macular degeneration to ocular pigmentation. Am J Ophthalmol 99(2):185–187PubMed
9.
go back to reference Weiter JJ, Delori FC, Wing GL, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27(2):145–152PubMed Weiter JJ, Delori FC, Wing GL, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27(2):145–152PubMed
10.
go back to reference Robins AH (1973) Skin melanin content in blue-eyed and brown-eyed subjects. Hum Hered 23(1):13–18CrossRefPubMed Robins AH (1973) Skin melanin content in blue-eyed and brown-eyed subjects. Hum Hered 23(1):13–18CrossRefPubMed
11.
go back to reference Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMed Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMed
12.
go back to reference Westall CA, Panton CM, Levin AV (1998) Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc Ophthalmol 96(4):355–379CrossRefPubMed Westall CA, Panton CM, Levin AV (1998) Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc Ophthalmol 96(4):355–379CrossRefPubMed
13.
go back to reference Weleber RG (1981) The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci 20(3):392–399PubMed Weleber RG (1981) The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci 20(3):392–399PubMed
14.
go back to reference Perlman I, Meyer E, Haim T, Zonis S (1984) Retinal function in high refractive error assessed electroretinographically. Br J Ophthalmol 68(2):79–84CrossRefPubMed Perlman I, Meyer E, Haim T, Zonis S (1984) Retinal function in high refractive error assessed electroretinographically. Br J Ophthalmol 68(2):79–84CrossRefPubMed
15.
go back to reference Westall CA, Dhaliwal HS, Panton CM, Sigesmun D, Levin AV, Nischal KK, Heon E (2001) Values of electroretinogram responses according to axial length. Doc Ophthalmol 102(2):115–130CrossRefPubMed Westall CA, Dhaliwal HS, Panton CM, Sigesmun D, Levin AV, Nischal KK, Heon E (2001) Values of electroretinogram responses according to axial length. Doc Ophthalmol 102(2):115–130CrossRefPubMed
16.
go back to reference Seddon JM, Sahagian CR et al (1990) Evaluation of an iris color classification system. The Eye Disorders Case-Control Study Group. Invest Ophthalmol Vis Sci 31(8):1592–1598PubMed Seddon JM, Sahagian CR et al (1990) Evaluation of an iris color classification system. The Eye Disorders Case-Control Study Group. Invest Ophthalmol Vis Sci 31(8):1592–1598PubMed
17.
go back to reference Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (cyprinidae). J Physiol 185(3):536–555PubMed Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (cyprinidae). J Physiol 185(3):536–555PubMed
18.
go back to reference Severns ML, Johnson MA (1993) The care and fitting of Naka-Rushton functions to electroretinographic intensity-response data. Doc Ophthalmol 85(2):135–150CrossRefPubMed Severns ML, Johnson MA (1993) The care and fitting of Naka-Rushton functions to electroretinographic intensity-response data. Doc Ophthalmol 85(2):135–150CrossRefPubMed
19.
go back to reference Hamilton R, Bees MA, Chaplin CA, McCulloch DL (2007) The luminance-response function of the human photopic electroretinogram: a mathematical model. Vision Res 47(23):2968–2972CrossRefPubMed Hamilton R, Bees MA, Chaplin CA, McCulloch DL (2007) The luminance-response function of the human photopic electroretinogram: a mathematical model. Vision Res 47(23):2968–2972CrossRefPubMed
20.
go back to reference Bach M, Poloschek CM, Wozniak S (2009) Moving from non-standard to standard stimuli in the ERG [abstract]. Doc Ophthalmol 119:17CrossRef Bach M, Poloschek CM, Wozniak S (2009) Moving from non-standard to standard stimuli in the ERG [abstract]. Doc Ophthalmol 119:17CrossRef
21.
go back to reference Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114CrossRefPubMed Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114CrossRefPubMed
22.
go back to reference Zemel E, Loewenstein A, Lei B, Lazar M, Perlman I (1995) Ocular pigmentation protects the rabbit retina from gentamicin-induced toxicity. Invest Ophthalmol Vis Sci 36(9):1875–1884PubMed Zemel E, Loewenstein A, Lei B, Lazar M, Perlman I (1995) Ocular pigmentation protects the rabbit retina from gentamicin-induced toxicity. Invest Ophthalmol Vis Sci 36(9):1875–1884PubMed
23.
go back to reference Bui BV, Sinclair AJ, Vingrys AJ (1998) Electroretinograms of albino and pigmented guinea-pigs (cavia porcellus). Aust N Z J Ophthalmol 26(Suppl 1):S98–S100 Bui BV, Sinclair AJ, Vingrys AJ (1998) Electroretinograms of albino and pigmented guinea-pigs (cavia porcellus). Aust N Z J Ophthalmol 26(Suppl 1):S98–S100
24.
go back to reference Bui BV, Vingrys AJ (1999) Development of receptoral responses in pigmented and albino guinea-pigs (cavia porcellus). Doc Ophthalmol 99(2):151–170CrossRefPubMed Bui BV, Vingrys AJ (1999) Development of receptoral responses in pigmented and albino guinea-pigs (cavia porcellus). Doc Ophthalmol 99(2):151–170CrossRefPubMed
25.
go back to reference Vingrys AJ, Bui BV (2001) Development of postreceptoral function in pigmented and albino guinea pigs. Vis Neurosci 18(4):605–613CrossRefPubMed Vingrys AJ, Bui BV (2001) Development of postreceptoral function in pigmented and albino guinea pigs. Vis Neurosci 18(4):605–613CrossRefPubMed
26.
go back to reference Behn D, Doke A, Racine J, Casanova C, Chemtob S, Lachapelle P (2003) Dark adaptation is faster in pigmented than albino rats. Doc Ophthalmol 106(2):153–159CrossRefPubMed Behn D, Doke A, Racine J, Casanova C, Chemtob S, Lachapelle P (2003) Dark adaptation is faster in pigmented than albino rats. Doc Ophthalmol 106(2):153–159CrossRefPubMed
27.
go back to reference Racine J, Joly S, Rufiange M, Rosolen S, Casanova C, Lachapelle P (2005) The photopic ERG of the albino guinea pigs (Cavia porcellus): a model of the human photopic ERG. Documenta Ophthalmologica 110(1):67–77CrossRefPubMed Racine J, Joly S, Rufiange M, Rosolen S, Casanova C, Lachapelle P (2005) The photopic ERG of the albino guinea pigs (Cavia porcellus): a model of the human photopic ERG. Documenta Ophthalmologica 110(1):67–77CrossRefPubMed
28.
go back to reference Heiduschka P, Schraermeyer U (2008) Comparison of visual function in pigmented and albino rats by electroretinography and visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 246(11):1559–1573CrossRefPubMed Heiduschka P, Schraermeyer U (2008) Comparison of visual function in pigmented and albino rats by electroretinography and visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 246(11):1559–1573CrossRefPubMed
29.
go back to reference Dodt E, Copenhaver RM, Gunkel RD (1959) Electroretinographic measurement of the spectral sensitivity in albinos, caucasians, and negroes. Arch Ophthalmol 62:795–803PubMed Dodt E, Copenhaver RM, Gunkel RD (1959) Electroretinographic measurement of the spectral sensitivity in albinos, caucasians, and negroes. Arch Ophthalmol 62:795–803PubMed
30.
go back to reference Schmidt B (1965) Sensorial examination in an African albino child. Acta Fac Med Univ Brumen 25:83–89 Schmidt B (1965) Sensorial examination in an African albino child. Acta Fac Med Univ Brumen 25:83–89
31.
go back to reference Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic erg b-wave at higher stimulus intensities in humans. Jpn J Ophthalmol 44(1):20–28CrossRefPubMed Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic erg b-wave at higher stimulus intensities in humans. Jpn J Ophthalmol 44(1):20–28CrossRefPubMed
32.
go back to reference Sieving PA (1993) Photopic on- and off-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773PubMed Sieving PA (1993) Photopic on- and off-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773PubMed
33.
go back to reference Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532CrossRefPubMed Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532CrossRefPubMed
34.
go back to reference Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45(3):1033–1040CrossRefPubMed Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45(3):1033–1040CrossRefPubMed
35.
go back to reference Rufiange M, Dassa J, Dembinska O, Koenekoop RK, Little JM, Polomeno RC, Dumont M, Chemtob S, Lachapelle P (2003) The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res 43(12):1405–1412CrossRefPubMed Rufiange M, Dassa J, Dembinska O, Koenekoop RK, Little JM, Polomeno RC, Dumont M, Chemtob S, Lachapelle P (2003) The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res 43(12):1405–1412CrossRefPubMed
36.
go back to reference Miyake Y (2006) Electrodiagnosis of retinal diseases. Springer, Tokyo, pp 1–41 Miyake Y (2006) Electrodiagnosis of retinal diseases. Springer, Tokyo, pp 1–41
37.
go back to reference Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837CrossRefPubMed Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837CrossRefPubMed
38.
go back to reference Lachapelle P, Rousseau S, McKerral M, Benoit J, Polomeno RC, Koenekoop RK, Little JM (1998) Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 95(1):35–54CrossRefPubMed Lachapelle P, Rousseau S, McKerral M, Benoit J, Polomeno RC, Koenekoop RK, Little JM (1998) Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 95(1):35–54CrossRefPubMed
39.
go back to reference Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521CrossRefPubMed Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521CrossRefPubMed
40.
go back to reference Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT press, Cambridge, p 150 Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT press, Cambridge, p 150
41.
go back to reference Robson JG, Frishman LJ (1999) Dissecting the dark adapted electroretinogram. Doc Ophthalmol 95:187–215CrossRef Robson JG, Frishman LJ (1999) Dissecting the dark adapted electroretinogram. Doc Ophthalmol 95:187–215CrossRef
42.
go back to reference Robson JG, Saszik SM, Jameel A, Frishman LJ (2003) Rod and Cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547(2):509–530CrossRefPubMed Robson JG, Saszik SM, Jameel A, Frishman LJ (2003) Rod and Cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547(2):509–530CrossRefPubMed
43.
go back to reference Kojima M, Zrenner E (1978) Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Albrecht Von Graefes Arch Klin Exp Ophthalmol 206(2):107–120CrossRefPubMed Kojima M, Zrenner E (1978) Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Albrecht Von Graefes Arch Klin Exp Ophthalmol 206(2):107–120CrossRefPubMed
44.
go back to reference Hood DC, Birch DG (1996) Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. J Opt Soc Am A Opt Image Sci Vis 13(3):623–633CrossRefPubMed Hood DC, Birch DG (1996) Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. J Opt Soc Am A Opt Image Sci Vis 13(3):623–633CrossRefPubMed
45.
go back to reference Fulton AB, Hansen RM (2006) Stimulus-response functions for the scotopic b-wave. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT press, Cambridge, p 473 Fulton AB, Hansen RM (2006) Stimulus-response functions for the scotopic b-wave. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT press, Cambridge, p 473
46.
go back to reference Abbas M, D’Amico F et al (2009) Structural, electrical, electronic and optical properties of melanin films. Eur Phys J E Soft Matter 28(3):285–291CrossRefPubMed Abbas M, D’Amico F et al (2009) Structural, electrical, electronic and optical properties of melanin films. Eur Phys J E Soft Matter 28(3):285–291CrossRefPubMed
47.
go back to reference Drager UC (1985) Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci U S A 82(19):6716–6720CrossRefPubMed Drager UC (1985) Calcium binding in pigmented and albino eyes. Proc Natl Acad Sci U S A 82(19):6716–6720CrossRefPubMed
48.
go back to reference Yau KW (1994) Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 35(1):9–32PubMed Yau KW (1994) Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 35(1):9–32PubMed
49.
go back to reference Nakatani K, Yau KW (1988) Calcium and light adaptation in retinal rods and cones. Nature 334(6177):69–71CrossRefPubMed Nakatani K, Yau KW (1988) Calcium and light adaptation in retinal rods and cones. Nature 334(6177):69–71CrossRefPubMed
50.
go back to reference Brule J, Lavoie MP, Casanova C, Lachapelle P, Hebert M (2007) Evidence of a possible impact of the menstrual cycle on the reproducibility of scotopic ergs in women. Doc Ophthalmol 114(3):125–134CrossRefPubMed Brule J, Lavoie MP, Casanova C, Lachapelle P, Hebert M (2007) Evidence of a possible impact of the menstrual cycle on the reproducibility of scotopic ergs in women. Doc Ophthalmol 114(3):125–134CrossRefPubMed
51.
go back to reference Elsner AE, Burns SA, Weiter JJ et al (1996) Infrared imaging of sub-retinal structures in the human ocular fundus. Vision Res 36(1):191–205CrossRefPubMed Elsner AE, Burns SA, Weiter JJ et al (1996) Infrared imaging of sub-retinal structures in the human ocular fundus. Vision Res 36(1):191–205CrossRefPubMed
52.
go back to reference Bone RA, Brener B, Gibert JC (2007) Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry. Vision Res 47(26):3259–3268CrossRefPubMed Bone RA, Brener B, Gibert JC (2007) Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry. Vision Res 47(26):3259–3268CrossRefPubMed
53.
go back to reference Kilbride PE, Alexander KR, Fishman M, Fishman GA (1989) Human macular pigment assessed by imaging fundus reflectometry. Vision Res 29(6):663–674CrossRefPubMed Kilbride PE, Alexander KR, Fishman M, Fishman GA (1989) Human macular pigment assessed by imaging fundus reflectometry. Vision Res 29(6):663–674CrossRefPubMed
Metadata
Title
Light- and dark-adapted electroretinograms (ERGs) and ocular pigmentation: comparison of brown- and blue-eyed cohorts
Authors
Abdlsaed Al Abdlseaed
Yvonne McTaggart
Thomas Ramage
Ruth Hamilton
Daphne L. McCulloch
Publication date
01-10-2010
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 2/2010
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-010-9240-3

Other articles of this Issue 2/2010

Documenta Ophthalmologica 2/2010 Go to the issue