Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2007

01-11-2007 | Original Research Paper

Interpretation of the mouse electroretinogram

Authors: Lawrence H. Pinto, Brandon Invergo, Kazuhiro Shimomura, Joseph S. Takahashi, John B. Troy

Published in: Documenta Ophthalmologica | Issue 3/2007

Login to get access

Abstract

The mouse electroretinogram (ERG) consists of a complex set of signals or “waves” generated by multiple types of retinal cell. The origins of these waves are reviewed briefly for the C57BL/6J mouse. The differences in the properties of these waves are described for 34 strains of mice and 11 F1 hybrid mice, as is the way that inter-strain genetic polymorphisms can be exploited in order to help pin-point the genes responsible for ERG differences. There are certain technical difficulties, some subtle, that can arise in recording the ERG and these are classified and illustrated in order to facilitate their diagnosis. Forward genetic screens are described, along with abnormal mice that have been generated in a large screen. Several means are suggested for determining if a mouse having an abnormal ERG is a mutant.
Appendix
Available only for authorised users
Literature
1.
go back to reference Heckenlively JR, Rodriguez JA, Daiger SP (1991) Autosomal dominant sectoral retinitis pigmentosa. Two families with transversion mutation in codon 23 of rhodopsin. Arch Ophthalmol 109:84–91PubMed Heckenlively JR, Rodriguez JA, Daiger SP (1991) Autosomal dominant sectoral retinitis pigmentosa. Two families with transversion mutation in codon 23 of rhodopsin. Arch Ophthalmol 109:84–91PubMed
2.
go back to reference Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36PubMedCrossRef Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36PubMedCrossRef
3.
go back to reference Sharma S, Ball SL, Peachey NS (2005) Pharmacological studies of the mouse cone electroretinogram. Vis Neurosci 22:631–636PubMed Sharma S, Ball SL, Peachey NS (2005) Pharmacological studies of the mouse cone electroretinogram. Vis Neurosci 22:631–636PubMed
4.
go back to reference Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223:201–204PubMedCrossRef Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223:201–204PubMedCrossRef
5.
go back to reference Hagins WA, Penn RD, Yoshikami S (1970) Dark current and photocurrent in retinal rods. Biophys J 10:380–412PubMed Hagins WA, Penn RD, Yoshikami S (1970) Dark current and photocurrent in retinal rods. Biophys J 10:380–412PubMed
6.
go back to reference Hood DC, Birch DG (1990) A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 5:379–387PubMedCrossRef Hood DC, Birch DG (1990) A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 5:379–387PubMedCrossRef
7.
go back to reference Goto Y et al (1996) Rod phototransduction in transgenic mice expressing a mutant opsin gene. J Opt Soc Am A-Optics Image Sci 13:577–585 Goto Y et al (1996) Rod phototransduction in transgenic mice expressing a mutant opsin gene. J Opt Soc Am A-Optics Image Sci 13:577–585
8.
go back to reference Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 19:442–455PubMed Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 19:442–455PubMed
9.
go back to reference Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850PubMed Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850PubMed
10.
go back to reference Tian N, Slaughter MM (1995) Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 35:1359–1364PubMedCrossRef Tian N, Slaughter MM (1995) Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 35:1359–1364PubMedCrossRef
11.
go back to reference Robson JG, Frishman LJ (1996) Photoreceptor and bipolar cell contributions to the cat electroretinogram: a kinetic model for the early part of the flash response. J Opt Soc Am A 13:613–622CrossRef Robson JG, Frishman LJ (1996) Photoreceptor and bipolar cell contributions to the cat electroretinogram: a kinetic model for the early part of the flash response. J Opt Soc Am A 13:613–622CrossRef
12.
go back to reference Robson JG, Maeda H, Saszik SM, Frishman LJ (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 44:3253–3268PubMedCrossRef Robson JG, Maeda H, Saszik SM, Frishman LJ (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 44:3253–3268PubMedCrossRef
13.
go back to reference Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543:899–916PubMedCrossRef Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543:899–916PubMedCrossRef
14.
go back to reference Steinberg R, Linsenmeier R, Griff E (1985) Retinal pigment epithelium contributions to the electroretinogram and electrooculogram. Progr Ret Res 4:33–66CrossRef Steinberg R, Linsenmeier R, Griff E (1985) Retinal pigment epithelium contributions to the electroretinogram and electrooculogram. Progr Ret Res 4:33–66CrossRef
15.
go back to reference Hanitzsch R, Lichtenberger T (1997) Two neuronal retinal components of the electroretinogram c-wave. Doc Ophthalmol 94:275–285PubMedCrossRef Hanitzsch R, Lichtenberger T (1997) Two neuronal retinal components of the electroretinogram c-wave. Doc Ophthalmol 94:275–285PubMedCrossRef
16.
go back to reference Gallemore RP, Hughes BA (1998) Light-induced responses of the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) Retinal pigment epithelial function and disease. Oxford University Press, New York, pp 175–198 Gallemore RP, Hughes BA (1998) Light-induced responses of the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) Retinal pigment epithelial function and disease. Oxford University Press, New York, pp 175–198
17.
go back to reference Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521PubMedCrossRef Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521PubMedCrossRef
18.
go back to reference Pinto LH et al (2004) Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Res 44:3335–3345PubMedCrossRef Pinto LH et al (2004) Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Res 44:3335–3345PubMedCrossRef
19.
go back to reference Wu J, Peachey NS, Marmorstein AD (2004) Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol 91:1134–1142PubMedCrossRef Wu J, Peachey NS, Marmorstein AD (2004) Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol 91:1134–1142PubMedCrossRef
20.
go back to reference Wade CM et al (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420:574–578PubMedCrossRef Wade CM et al (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420:574–578PubMedCrossRef
21.
go back to reference Wiltshire T et al (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380–3385PubMedCrossRef Wiltshire T et al (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380–3385PubMedCrossRef
22.
go back to reference Pletcher MT et al (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393PubMedCrossRef Pletcher MT et al (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393PubMedCrossRef
23.
go back to reference Zeng Y et al (2004) RS-1 gene delivery to an adult Rs1 h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked Retinoschisis. Invest Ophthalmol Vis Sci 45:3279–3285PubMedCrossRef Zeng Y et al (2004) RS-1 gene delivery to an adult Rs1 h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked Retinoschisis. Invest Ophthalmol Vis Sci 45:3279–3285PubMedCrossRef
24.
go back to reference Masu M et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765PubMedCrossRef Masu M et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765PubMedCrossRef
25.
go back to reference Pardue MT, McCall MA, LaVail MM, Gregg RG, Peachey NS (1998) A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci 39:2443–2449PubMed Pardue MT, McCall MA, LaVail MM, Gregg RG, Peachey NS (1998) A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci 39:2443–2449PubMed
26.
go back to reference Chang B et al (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11–24PubMed Chang B et al (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11–24PubMed
27.
go back to reference Pinto LH et al (2007) Generation, identification and functional characterization of the nob4 Mutation of Grm6 in the mouse. Vis Neurosci 24:111–123PubMedCrossRef Pinto LH et al (2007) Generation, identification and functional characterization of the nob4 Mutation of Grm6 in the mouse. Vis Neurosci 24:111–123PubMedCrossRef
28.
go back to reference Pacione LR, Szego MJ, Ikeda S, Nishina PM, McInnes RR (2003) Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu Rev Neurosci 26:657–700PubMedCrossRef Pacione LR, Szego MJ, Ikeda S, Nishina PM, McInnes RR (2003) Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu Rev Neurosci 26:657–700PubMedCrossRef
29.
go back to reference Bowes C et al (1993) Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci USA 90:2955–2959PubMedCrossRef Bowes C et al (1993) Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci USA 90:2955–2959PubMedCrossRef
30.
go back to reference D’Cruz PM et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651PubMedCrossRef D’Cruz PM et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651PubMedCrossRef
31.
go back to reference Gregg RG et al (2003) Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Vis Sci 44:378–384PubMedCrossRef Gregg RG et al (2003) Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Vis Sci 44:378–384PubMedCrossRef
32.
go back to reference Bech-Hansen NT et al (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26:319–323PubMedCrossRef Bech-Hansen NT et al (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26:319–323PubMedCrossRef
33.
go back to reference Ikeda A, Naggert JK, Nishina PM (2002) Genetic modification of retinal degeneration in tubby mice. Exp Eye Res 74:455–461PubMedCrossRef Ikeda A, Naggert JK, Nishina PM (2002) Genetic modification of retinal degeneration in tubby mice. Exp Eye Res 74:455–461PubMedCrossRef
34.
go back to reference Shedlovsky A, McDonald JD, Symula D, Dove WF (1993) Mouse models of human phenylketonuria. Genetics 134:1205–1210PubMed Shedlovsky A, McDonald JD, Symula D, Dove WF (1993) Mouse models of human phenylketonuria. Genetics 134:1205–1210PubMed
35.
go back to reference Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vision Res 42:517–525PubMedCrossRef Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vision Res 42:517–525PubMedCrossRef
36.
go back to reference Keeler CE (1924) The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci USA 10:329–333PubMedCrossRef Keeler CE (1924) The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci USA 10:329–333PubMedCrossRef
37.
go back to reference Bruckner R (1951) Slit-lamp microscopy and ophthalmoscopy in rat and mouse. Doc Ophthalmol 5–6:452–554PubMedCrossRef Bruckner R (1951) Slit-lamp microscopy and ophthalmoscopy in rat and mouse. Doc Ophthalmol 5–6:452–554PubMedCrossRef
38.
go back to reference Pittler SJ, Keeler CE, Sidman RL, Baehr W (1993) PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci USA 90:9616–9619PubMedCrossRef Pittler SJ, Keeler CE, Sidman RL, Baehr W (1993) PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci USA 90:9616–9619PubMedCrossRef
39.
go back to reference Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209PubMedCrossRef Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209PubMedCrossRef
40.
go back to reference Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45:4611–4616PubMedCrossRef Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45:4611–4616PubMedCrossRef
Metadata
Title
Interpretation of the mouse electroretinogram
Authors
Lawrence H. Pinto
Brandon Invergo
Kazuhiro Shimomura
Joseph S. Takahashi
John B. Troy
Publication date
01-11-2007
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 3/2007
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-007-9064-y

Other articles of this Issue 3/2007

Documenta Ophthalmologica 3/2007 Go to the issue