Skip to main content
Top
Published in: Clinical & Experimental Metastasis 4/2018

01-04-2018 | Research Paper

The challenge of drug resistance in cancer treatment: a current overview

Authors: Michail Nikolaou, Athanasia Pavlopoulou, Alexandros G. Georgakilas, Efthymios Kyrodimos

Published in: Clinical & Experimental Metastasis | Issue 4/2018

Login to get access

Abstract

It is generally accepted that recent advances in anticancer agents have contributed significantly to the improvement of both the disease-free survival and quality of life in cancer patients. However, in many instances, a favorable initial response to treatment changes afterwards, thereby leading to cancer relapse and recurrence. This phenomenon of acquired resistance to therapy, it is a major problem for totally efficient anticancer therapy. The failure to obtain an initial response reflects a form of intrinsic resistance. Specific cell membrane transporter proteins are implicated in intrinsic drug resistance by altering drug transport and pumping drugs out of the tumor cells. Moreover, the gradual acquisition of specific genetic and epigenetic abnormalities in cancer cells could contribute greatly to acquired drug resistance. A critical issue in the clinical setting, is that the problem of drug resistance appears to have a negative effect on also the new molecularly-targeted anticancer drugs. Several ongoing efforts are being made by the medical community aimed to the identification of such resistance mechanisms and the development of novel drugs that could overcome them. In this review, the major drug resistance mechanisms and strategies to overcome them are critically discussed, and also possible future directions are suggested.
Literature
2.
go back to reference Clynes M (1998) Multiple drug resistance in cancer 2: molecular, cellular and clinical aspects. Kluwer Academic Publishers, DodrechtCrossRef Clynes M (1998) Multiple drug resistance in cancer 2: molecular, cellular and clinical aspects. Kluwer Academic Publishers, DodrechtCrossRef
6.
go back to reference Gottesman MM, Ludwig J, Xia D, Szakacs G (2006) Defeating drug resistance in cancer. Discov Med 6(31):18–23PubMed Gottesman MM, Ludwig J, Xia D, Szakacs G (2006) Defeating drug resistance in cancer. Discov Med 6(31):18–23PubMed
8.
17.
go back to reference Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74(6):957–967PubMedCrossRef Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74(6):957–967PubMedCrossRef
20.
21.
go back to reference Goldie JH, Coldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11–12):1727–1733PubMed Goldie JH, Coldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11–12):1727–1733PubMed
22.
go back to reference Goldie JH, Coldman AJ (1985) Genetic instability in the development of drug resistance. Semin Oncol 12(3):222–230PubMed Goldie JH, Coldman AJ (1985) Genetic instability in the development of drug resistance. Semin Oncol 12(3):222–230PubMed
23.
go back to reference Coldman AJ, Goldie JH (1986) A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol 48(3–4):279–292PubMedCrossRef Coldman AJ, Goldie JH (1986) A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol 48(3–4):279–292PubMedCrossRef
24.
go back to reference Woodhouse JR, Ferry DR (1995) The genetic basis of resistance to cancer chemotherapy. Ann Med 27(2):157–167PubMedCrossRef Woodhouse JR, Ferry DR (1995) The genetic basis of resistance to cancer chemotherapy. Ann Med 27(2):157–167PubMedCrossRef
25.
go back to reference Angerer WP (2001) An explicit representation of the Luria-Delbruck distribution. J Math Biol 42(2):145–174PubMedCrossRef Angerer WP (2001) An explicit representation of the Luria-Delbruck distribution. J Math Biol 42(2):145–174PubMedCrossRef
27.
go back to reference Frank SA (2003) Somatic mosaicism and cancer: inference based on a conditional Luria-Delbruck distribution. J Theor Biol 223(4):405–412PubMedCrossRef Frank SA (2003) Somatic mosaicism and cancer: inference based on a conditional Luria-Delbruck distribution. J Theor Biol 223(4):405–412PubMedCrossRef
32.
go back to reference Beketic-Oreskovic L, Duran GE, Chen G, Dumontet C, Sikic BI (1995) Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst 87(21):1593–1602PubMedCrossRef Beketic-Oreskovic L, Duran GE, Chen G, Dumontet C, Sikic BI (1995) Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. J Natl Cancer Inst 87(21):1593–1602PubMedCrossRef
33.
go back to reference Chen G, Jaffrezou JP, Fleming WH, Duran GE, Sikic BI (1994) Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res 54(18):4980–4987PubMed Chen G, Jaffrezou JP, Fleming WH, Duran GE, Sikic BI (1994) Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res 54(18):4980–4987PubMed
34.
go back to reference Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI (1996) Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 56(5):1091–1097PubMed Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI (1996) Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 56(5):1091–1097PubMed
35.
go back to reference Jaffrezou JP, Chen G, Duran GE, Kuhl JS, Sikic BI (1994) Mutation rates and mechanisms of resistance to etoposide determined from fluctuation analysis. J Natl Cancer Inst 86(15):1152–1158PubMedCrossRef Jaffrezou JP, Chen G, Duran GE, Kuhl JS, Sikic BI (1994) Mutation rates and mechanisms of resistance to etoposide determined from fluctuation analysis. J Natl Cancer Inst 86(15):1152–1158PubMedCrossRef
37.
go back to reference Matsumoto Y, Takano H, Fojo T (1997) Cellular adaptation to drug exposure: evolution of the drug-resistant phenotype. Cancer Res 57(22):5086–5092PubMed Matsumoto Y, Takano H, Fojo T (1997) Cellular adaptation to drug exposure: evolution of the drug-resistant phenotype. Cancer Res 57(22):5086–5092PubMed
38.
go back to reference Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205 PubMedCrossRef Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366(10):883–892. https://​doi.​org/​10.​1056/​NEJMoa1113205 PubMedCrossRef
41.
go back to reference Alt FW, Kellems RE, Bertino JR, Schimke RT (1992) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. 1978. Biotechnology 24:397–410PubMed Alt FW, Kellems RE, Bertino JR, Schimke RT (1992) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. 1978. Biotechnology 24:397–410PubMed
46.
51.
go back to reference Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33(6):453–458PubMedCrossRef Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33(6):453–458PubMedCrossRef
52.
go back to reference Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1(1):27–42CrossRef Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1(1):27–42CrossRef
53.
go back to reference Campos L, Guyotat D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D, Fiere D (1992) Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79(2):473–476PubMed Campos L, Guyotat D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D, Fiere D (1992) Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79(2):473–476PubMed
55.
go back to reference Marie JP, Zittoun R, Sikic BI (1991) Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood 78(3):586–592PubMed Marie JP, Zittoun R, Sikic BI (1991) Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood 78(3):586–592PubMed
61.
go back to reference Fisher GA, Sikic BI (1995) Clinical studies with modulators of multidrug resistance. Hematol/Oncol Clin N Am 9(2):363–382CrossRef Fisher GA, Sikic BI (1995) Clinical studies with modulators of multidrug resistance. Hematol/Oncol Clin N Am 9(2):363–382CrossRef
63.
go back to reference Sikic BI (1997) Pharmacologic approaches to reversing multidrug resistance. Semin Hematol 34(4 Suppl 5):40–47PubMed Sikic BI (1997) Pharmacologic approaches to reversing multidrug resistance. Semin Hematol 34(4 Suppl 5):40–47PubMed
64.
go back to reference Capranico G, De Isabella P, Castelli C, Supino R, Parmiani G, Zunino F (1989) P-glycoprotein gene amplification and expression in multidrug-resistant murine P388 and B16 cell lines. Br J Cancer 59(5):682–685PubMedPubMedCentralCrossRef Capranico G, De Isabella P, Castelli C, Supino R, Parmiani G, Zunino F (1989) P-glycoprotein gene amplification and expression in multidrug-resistant murine P388 and B16 cell lines. Br J Cancer 59(5):682–685PubMedPubMedCentralCrossRef
67.
go back to reference Burg D, Wielinga P, Zelcer N, Saeki T, Mulder GJ, Borst P (2002) Inhibition of the multidrug resistance protein 1 (MRP1) by peptidomimetic glutathione-conjugate analogs. Mol Pharmacol 62(5):1160–1166PubMedCrossRef Burg D, Wielinga P, Zelcer N, Saeki T, Mulder GJ, Borst P (2002) Inhibition of the multidrug resistance protein 1 (MRP1) by peptidomimetic glutathione-conjugate analogs. Mol Pharmacol 62(5):1160–1166PubMedCrossRef
68.
go back to reference Chen YN, Mickley LA, Schwartz AM, Acton EM, Hwang JL, Fojo AT (1990) Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 265(17):10073–10080PubMed Chen YN, Mickley LA, Schwartz AM, Acton EM, Hwang JL, Fojo AT (1990) Characterization of adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 265(17):10073–10080PubMed
70.
go back to reference Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T (2001) The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 33(6):503–511PubMedCrossRef Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T (2001) The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 33(6):503–511PubMedCrossRef
71.
go back to reference Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91(5):429–433PubMedCrossRef Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91(5):429–433PubMedCrossRef
76.
go back to reference Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3(1):1–19PubMedCrossRef Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets 3(1):1–19PubMedCrossRef
77.
go back to reference Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M, Ross JS, Zhang P, Buchholz TA, Kuerer H, Green M, Arun B, Hortobagyi GN, Symmans WF, Pusztai L (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102(23):8315–8320. https://doi.org/10.1073/pnas.0408974102 PubMedCrossRef Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M, Ross JS, Zhang P, Buchholz TA, Kuerer H, Green M, Arun B, Hortobagyi GN, Symmans WF, Pusztai L (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102(23):8315–8320. https://​doi.​org/​10.​1073/​pnas.​0408974102 PubMedCrossRef
79.
go back to reference Andoh T, Ishii K, Suzuki Y, Ikegami Y, Kusunoki Y, Takemoto Y, Okada K (1987) Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci USA 84(16):5565–5569PubMedCrossRef Andoh T, Ishii K, Suzuki Y, Ikegami Y, Kusunoki Y, Takemoto Y, Okada K (1987) Characterization of a mammalian mutant with a camptothecin-resistant DNA topoisomerase I. Proc Natl Acad Sci USA 84(16):5565–5569PubMedCrossRef
80.
go back to reference Deffie AM, Batra JK, Goldenberg GJ (1989) Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res 49(1):58–62PubMed Deffie AM, Batra JK, Goldenberg GJ (1989) Direct correlation between DNA topoisomerase II activity and cytotoxicity in adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res 49(1):58–62PubMed
81.
go back to reference Tanizawa A, Pommier Y (1992) Topoisomerase I alteration in a camptothecin-resistant cell line derived from Chinese hamster DC3F cells in culture. Cancer Res 52(7):1848–1854PubMed Tanizawa A, Pommier Y (1992) Topoisomerase I alteration in a camptothecin-resistant cell line derived from Chinese hamster DC3F cells in culture. Cancer Res 52(7):1848–1854PubMed
83.
go back to reference Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 13(12):1841–1851PubMedCrossRef Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 13(12):1841–1851PubMedCrossRef
87.
go back to reference Kaina B, Christmann M (2002) DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 40(8):354–367PubMedCrossRef Kaina B, Christmann M (2002) DNA repair in resistance to alkylating anticancer drugs. Int J Clin Pharmacol Ther 40(8):354–367PubMedCrossRef
88.
go back to reference Ceppi P, Volante M, Novello S, Rapa I, Danenberg KD, Danenberg PV, Cambieri A, Selvaggi G, Saviozzi S, Calogero R, Papotti M, Scagliotti GV (2006) ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 17(12):1818–1825. https://doi.org/10.1093/annonc/mdl300 PubMedCrossRef Ceppi P, Volante M, Novello S, Rapa I, Danenberg KD, Danenberg PV, Cambieri A, Selvaggi G, Saviozzi S, Calogero R, Papotti M, Scagliotti GV (2006) ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 17(12):1818–1825. https://​doi.​org/​10.​1093/​annonc/​mdl300 PubMedCrossRef
93.
go back to reference Fan S, el-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW, O’Connor PM (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54(22):5824–5830PubMed Fan S, el-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW, O’Connor PM (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54(22):5824–5830PubMed
95.
go back to reference Tannock I (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62(8):1117–1133PubMed Tannock I (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep 62(8):1117–1133PubMed
96.
97.
go back to reference Hirst DG, Denekamp J (1979) Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinetics 12(1):31–42PubMed Hirst DG, Denekamp J (1979) Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinetics 12(1):31–42PubMed
98.
go back to reference Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J (2002) Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54(1):215–228PubMedCrossRef Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J (2002) Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54(1):215–228PubMedCrossRef
100.
go back to reference Shain KH, Dalton WS (2001) Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther 1(1):69–78PubMed Shain KH, Dalton WS (2001) Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther 1(1):69–78PubMed
101.
go back to reference Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237PubMedCrossRef Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237PubMedCrossRef
103.
go back to reference Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 83(16):5978–5982PubMedCrossRef Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 83(16):5978–5982PubMedCrossRef
104.
go back to reference Rice GC, Ling V, Schimke RT (1987) Frequencies of independent and simultaneous selection of Chinese hamster cells for methotrexate and doxorubicin (adriamycin) resistance. Proc Natl Acad Sci USA 84(24):9261–9264PubMedCrossRef Rice GC, Ling V, Schimke RT (1987) Frequencies of independent and simultaneous selection of Chinese hamster cells for methotrexate and doxorubicin (adriamycin) resistance. Proc Natl Acad Sci USA 84(24):9261–9264PubMedCrossRef
105.
go back to reference Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394PubMed Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394PubMed
106.
go back to reference Kennedy KA (1987) Hypoxic cells as specific drug targets for chemotherapy. Anti-Cancer Drug Des 2(2):181–194 Kennedy KA (1987) Hypoxic cells as specific drug targets for chemotherapy. Anti-Cancer Drug Des 2(2):181–194
108.
go back to reference Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66(7):1219–1229PubMedCrossRef Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66(7):1219–1229PubMedCrossRef
109.
go back to reference Cowan DS, Tannock IF (2001) Factors that influence the penetration of methotrexate through solid tissue. Intl J Cancer 91(1):120–125CrossRef Cowan DS, Tannock IF (2001) Factors that influence the penetration of methotrexate through solid tissue. Intl J Cancer 91(1):120–125CrossRef
110.
go back to reference Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Boston University, Sunderland (MA) Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Boston University, Sunderland (MA)
111.
go back to reference Spears CP (1995) Clinical resistance to antimetabolites. Hematol/Oncol Clin N Am 9(2):397–413CrossRef Spears CP (1995) Clinical resistance to antimetabolites. Hematol/Oncol Clin N Am 9(2):397–413CrossRef
112.
go back to reference Kickhoefer VA, Rajavel KS, Scheffer GL, Dalton WS, Scheper RJ, Rome LH (1998) Vaults are up-regulated in multidrug-resistant cancer cell lines. J Biol Chem 273(15):8971–8974PubMedCrossRef Kickhoefer VA, Rajavel KS, Scheffer GL, Dalton WS, Scheper RJ, Rome LH (1998) Vaults are up-regulated in multidrug-resistant cancer cell lines. J Biol Chem 273(15):8971–8974PubMedCrossRef
113.
go back to reference List AF, Spier CS, Grogan TM, Johnson C, Roe DJ, Greer JP, Wolff SN, Broxterman HJ, Scheffer GL, Scheper RJ, Dalton WS (1996) Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 87(6):2464–2469PubMed List AF, Spier CS, Grogan TM, Johnson C, Roe DJ, Greer JP, Wolff SN, Broxterman HJ, Scheffer GL, Scheper RJ, Dalton WS (1996) Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 87(6):2464–2469PubMed
114.
go back to reference Steuart CD, Burke PJ (1971) Cytidine deaminase and the development of resistance to arabinosyl cytosine. Nature 233(38):109–110 Steuart CD, Burke PJ (1971) Cytidine deaminase and the development of resistance to arabinosyl cytosine. Nature 233(38):109–110
115.
go back to reference Carlson RW, Sikic BI (1983) Continuous infusion or bolus injection in cancer chemotherapy. Ann Internal Med 99(6):823–833CrossRef Carlson RW, Sikic BI (1983) Continuous infusion or bolus injection in cancer chemotherapy. Ann Internal Med 99(6):823–833CrossRef
116.
go back to reference Cassidy J (1994) Chemotherapy administration: doses, infusions and choice of schedule. Ann Oncol 5(Suppl 4):25–29 (discussion 29–30)PubMedCrossRef Cassidy J (1994) Chemotherapy administration: doses, infusions and choice of schedule. Ann Oncol 5(Suppl 4):25–29 (discussion 29–30)PubMedCrossRef
117.
go back to reference Marangolo M, Bengala C, Conte PF, Danova M, Pronzato P, Rosti G, Sagrada P (2006) Dose and outcome: the hurdle of neutropenia (Review). Oncol Rep 16(2):233–248PubMed Marangolo M, Bengala C, Conte PF, Danova M, Pronzato P, Rosti G, Sagrada P (2006) Dose and outcome: the hurdle of neutropenia (Review). Oncol Rep 16(2):233–248PubMed
122.
go back to reference Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86(2):695–698PubMedCrossRef Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86(2):695–698PubMedCrossRef
123.
go back to reference Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502PubMedCrossRef Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502PubMedCrossRef
127.
go back to reference Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://doi.org/10.1093/nar/gkw937 CrossRef Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368. https://​doi.​org/​10.​1093/​nar/​gkw937 CrossRef
Metadata
Title
The challenge of drug resistance in cancer treatment: a current overview
Authors
Michail Nikolaou
Athanasia Pavlopoulou
Alexandros G. Georgakilas
Efthymios Kyrodimos
Publication date
01-04-2018
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 4/2018
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-018-9903-0

Other articles of this Issue 4/2018

Clinical & Experimental Metastasis 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine