Skip to main content
Top
Published in: Clinical & Experimental Metastasis 3/2013

01-03-2013 | Research Paper

Protein pathway activation mapping of colorectal metastatic progression reveals metastasis-specific network alterations

Authors: Alessandra Silvestri, Valerie Calvert, Claudio Belluco, Michael Lipsky, Ruggero De Maria, Jianghong Deng, Alfonso Colombatti, Francesco De Marchi, Donato Nitti, Enzo Mammano, Lance Liotta, Emanuel Petricoin, Mariaelena Pierobon

Published in: Clinical & Experimental Metastasis | Issue 3/2013

Login to get access

Abstract

The mechanism by which tissue microecology influences invasion and metastasis is largely unknown. Recent studies have indicated differences in the molecular architecture of the metastatic lesion compared to the primary tumor, however, systemic analysis of the alterations within the activated protein signaling network has not been described. Using laser capture microdissection, protein microarray technology, and a unique specimen collection of 34 matched primary colorectal cancers (CRC) and synchronous hepatic metastasis, the quantitative measurement of the total and activated/phosphorylated levels of 86 key signaling proteins was performed. Activation of the EGFR–PDGFR-cKIT network, in addition to PI3K/AKT pathway, was found uniquely activated in the hepatic metastatic lesions compared to the matched primary tumors. If validated in larger study sets, these findings may have potential clinical relevance since many of these activated signaling proteins are current targets for molecularly targeted therapeutics. Thus, these findings could lead to liver metastasis specific molecular therapies for CRC.
Appendix
Available only for authorised users
Literature
2.
go back to reference Field K, Lipton L (2007) Metastatic colorectal cancer—past, progress and future. World J Gastroenterol 13(28):3806–3815PubMed Field K, Lipton L (2007) Metastatic colorectal cancer—past, progress and future. World J Gastroenterol 13(28):3806–3815PubMed
3.
go back to reference Kopetz S, Chang GJ, Overman MJ et al (2009) Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27(22):3677–3683PubMedCrossRef Kopetz S, Chang GJ, Overman MJ et al (2009) Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27(22):3677–3683PubMedCrossRef
4.
go back to reference Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873PubMedCrossRef Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873PubMedCrossRef
5.
go back to reference Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8(2):98–101PubMed Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8(2):98–101PubMed
6.
go back to reference Joyce T, Pintzas A (2007) Microarray analysis to reveal genes involved in colon carcinogenesis. Expert Opin Pharmacother 8(7):895–900PubMedCrossRef Joyce T, Pintzas A (2007) Microarray analysis to reveal genes involved in colon carcinogenesis. Expert Opin Pharmacother 8(7):895–900PubMedCrossRef
7.
go back to reference Li M, Lin YM, Hasegawa S et al (2004) Genes associated with liver metastasis of colon cancer identified by genome-wide cDNA microarray. Int J Oncol 24(2):305–312PubMed Li M, Lin YM, Hasegawa S et al (2004) Genes associated with liver metastasis of colon cancer identified by genome-wide cDNA microarray. Int J Oncol 24(2):305–312PubMed
8.
go back to reference Bertucci F, Salas S, Eysteries S et al (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23(7):1377–1391PubMedCrossRef Bertucci F, Salas S, Eysteries S et al (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23(7):1377–1391PubMedCrossRef
9.
go back to reference Houlston RS (2001) What we could do now: molecular pathology of colorectal cancer. Mol Pathol 54(4):206–214PubMedCrossRef Houlston RS (2001) What we could do now: molecular pathology of colorectal cancer. Mol Pathol 54(4):206–214PubMedCrossRef
10.
go back to reference Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24(8):575–585PubMedCrossRef Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24(8):575–585PubMedCrossRef
11.
go back to reference Mendez E, Fan W, Choi P et al (2007) Tumor-specific genetic expression profile of metastatic oral squamous cell carcinoma. Head Neck 29(9):803–814PubMedCrossRef Mendez E, Fan W, Choi P et al (2007) Tumor-specific genetic expression profile of metastatic oral squamous cell carcinoma. Head Neck 29(9):803–814PubMedCrossRef
12.
go back to reference Petricoin EF III, Bichsel VE, Calvert VS et al (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23(15):3614–3621PubMedCrossRef Petricoin EF III, Bichsel VE, Calvert VS et al (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23(15):3614–3621PubMedCrossRef
13.
go back to reference Gulmann C, Sheehan KM, Kay EW et al (2006) Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. J Pathol 208(5):595–606PubMedCrossRef Gulmann C, Sheehan KM, Kay EW et al (2006) Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. J Pathol 208(5):595–606PubMedCrossRef
14.
go back to reference Wulfkuhle JD, Edmiston KH, Liotta LA et al (2006) Technology insight: pharmacoproteomics for cancer—promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 3(5):256–268PubMedCrossRef Wulfkuhle JD, Edmiston KH, Liotta LA et al (2006) Technology insight: pharmacoproteomics for cancer—promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 3(5):256–268PubMedCrossRef
15.
go back to reference Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4):533–537PubMedCrossRef Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4):533–537PubMedCrossRef
16.
go back to reference Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730PubMed Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730PubMed
17.
go back to reference Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354PubMedCrossRef Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354PubMedCrossRef
18.
go back to reference Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603PubMedCrossRef Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603PubMedCrossRef
19.
go back to reference Espina V, Heiby M, Pierobon M et al (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7(5):647–657PubMedCrossRef Espina V, Heiby M, Pierobon M et al (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7(5):647–657PubMedCrossRef
20.
go back to reference VanMeter A, Signore M, Pierobon M et al (2007) Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 7(5):625–633PubMedCrossRef VanMeter A, Signore M, Pierobon M et al (2007) Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 7(5):625–633PubMedCrossRef
21.
go back to reference Speer R, Wulfkuhle J, Espina V et al (2007) Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics 4(3):157–164PubMed Speer R, Wulfkuhle J, Espina V et al (2007) Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics 4(3):157–164PubMed
22.
go back to reference Speer R, Wulfkuhle JD, Liotta LA et al (2005) Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 7(3):240–245PubMed Speer R, Wulfkuhle JD, Liotta LA et al (2005) Reverse-phase protein microarrays for tissue-based analysis. Curr Opin Mol Ther 7(3):240–245PubMed
23.
go back to reference Espina V, Mehta AI, Winters ME et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3(11):2091–2100PubMedCrossRef Espina V, Mehta AI, Winters ME et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3(11):2091–2100PubMedCrossRef
24.
go back to reference Wulfkuhle JD, Speer R, Pierobon M et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7(4):1508–1517PubMedCrossRef Wulfkuhle JD, Speer R, Pierobon M et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7(4):1508–1517PubMedCrossRef
25.
go back to reference Winters M, Dabir B, Yu M et al (2007) Constitution and quantity of lysis buffer alters outcome of reverse phase protein microarrays. Proteomics 7(22):4066–4068PubMedCrossRef Winters M, Dabir B, Yu M et al (2007) Constitution and quantity of lysis buffer alters outcome of reverse phase protein microarrays. Proteomics 7(22):4066–4068PubMedCrossRef
26.
go back to reference Pierobon M, Calvert V, Belluco C et al (2009) Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer 8(2):110–117CrossRef Pierobon M, Calvert V, Belluco C et al (2009) Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer 8(2):110–117CrossRef
27.
go back to reference Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460PubMedCrossRef Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460PubMedCrossRef
28.
go back to reference Jones S, Chen WD, Parmigiani G et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 105(11):4283–4288PubMedCrossRef Jones S, Chen WD, Parmigiani G et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 105(11):4283–4288PubMedCrossRef
29.
go back to reference Scartozzi M, Bearzi I, Berardi R et al (2004) Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol 22(23):4772–4778PubMedCrossRef Scartozzi M, Bearzi I, Berardi R et al (2004) Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol 22(23):4772–4778PubMedCrossRef
30.
go back to reference Italiano A, Hostein I, Soubeyran I et al (2010) KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann Surg Oncol 17(5):1429–1434PubMedCrossRef Italiano A, Hostein I, Soubeyran I et al (2010) KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann Surg Oncol 17(5):1429–1434PubMedCrossRef
31.
go back to reference Knijn N, Mekenkamp LJ, Klomp M et al (2011) KRAS mutation analysis: a comparison between primary tumors and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 104(6):1020–1026PubMedCrossRef Knijn N, Mekenkamp LJ, Klomp M et al (2011) KRAS mutation analysis: a comparison between primary tumors and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 104(6):1020–1026PubMedCrossRef
32.
go back to reference Vermaat JS, Nijman IJ, Koudijs MJ et al (2012) Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res 18(3):688–699PubMedCrossRef Vermaat JS, Nijman IJ, Koudijs MJ et al (2012) Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res 18(3):688–699PubMedCrossRef
33.
go back to reference Ericson K, Gan C, Cheong I et al (2010) Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 107(6):2598–2603PubMedCrossRef Ericson K, Gan C, Cheong I et al (2010) Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 107(6):2598–2603PubMedCrossRef
34.
go back to reference Rychahou PG, Kang J, Gulhati P et al (2008) Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 105(51):20315–20320PubMedCrossRef Rychahou PG, Kang J, Gulhati P et al (2008) Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 105(51):20315–20320PubMedCrossRef
35.
go back to reference Loupakis F, Pollina L, Stasi I et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27(16):2622–2629PubMedCrossRef Loupakis F, Pollina L, Stasi I et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27(16):2622–2629PubMedCrossRef
36.
go back to reference Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7(10):1998–2018PubMedCrossRef Espina V, Edmiston KH, Heiby M et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7(10):1998–2018PubMedCrossRef
Metadata
Title
Protein pathway activation mapping of colorectal metastatic progression reveals metastasis-specific network alterations
Authors
Alessandra Silvestri
Valerie Calvert
Claudio Belluco
Michael Lipsky
Ruggero De Maria
Jianghong Deng
Alfonso Colombatti
Francesco De Marchi
Donato Nitti
Enzo Mammano
Lance Liotta
Emanuel Petricoin
Mariaelena Pierobon
Publication date
01-03-2013
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 3/2013
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-012-9538-5

Other articles of this Issue 3/2013

Clinical & Experimental Metastasis 3/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine