Skip to main content
Top
Published in: Clinical & Experimental Metastasis 7/2012

01-10-2012 | Research Paper

Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets

Author: Keith T. Flaherty

Published in: Clinical & Experimental Metastasis | Issue 7/2012

Login to get access

Abstract

For decades, therapy for advanced melanoma has lagged behind most of the cancer field owing to its intrinsic resistance to conventional cytotoxic chemotherapy and limited impact of cytokine-based immunotherapy. The opportunity to develop molecularly targeted therapy emerged with the discovery of activating mutations in BRAF, a component of the long studied MAP kinase pathway. These mutations are found in approximately 50 % of patients with regionally advanced or metastatic melanoma and appear to be one of the initiating steps in the development of primary melanoma. Additional oncogenic events, particularly those that affect tumor suppressor genes, are essential for development of invasive and metastatic melanoma. Nonetheless, mutated BRAF retains its central contribution to melanoma pathophysiology even in advanced stage disease as manifested by the remarkable antitumor effects and alteration the natural history of metastatic melanoma of selective BRAF inhibitors. After initial response, resistance commonly emerges within a few months’ time and the field has focused on delineating molecular mechanisms of resistance toward the goal of improving upon the early therapeutic effects of single agent BRAF inhibition. Combination regimens are currently undergoing clinical investigation. NRAS and CKIT mutant melanoma represent the next oncogene defined melanoma subsets for which initial targeted therapy approaches are being explored, with early evidence suggesting progress with MEK and CKIT inhibitors, respectively. A considerable subset of patients have melanomas that are not defined by the presence of BRAF, NRAS, or CKIT mutations and, thus, the elucidation of the entire melanoma genome is being pursued with the hope of identifying additional therapeutic targets.
Literature
2.
go back to reference Balch CM, Gershenwald JE, Soong SJ et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206PubMedCrossRef Balch CM, Gershenwald JE, Soong SJ et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206PubMedCrossRef
3.
4.
go back to reference Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116PubMed Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116PubMed
5.
go back to reference Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U (2004) A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 10:1670–1677PubMedCrossRef Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U (2004) A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 10:1670–1677PubMedCrossRef
6.
go back to reference Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480PubMedCrossRef Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480PubMedCrossRef
7.
go back to reference Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRef Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRef
8.
go back to reference Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRef Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRef
9.
10.
go back to reference Wilhelm SM, Carter C, Tang L et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedCrossRef Wilhelm SM, Carter C, Tang L et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedCrossRef
11.
go back to reference Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122:337–341PubMedCrossRef Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122:337–341PubMedCrossRef
12.
go back to reference Uribe P, Wistuba II, Gonzalez S (2003) BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am J Dermatopathol 25:365–370PubMedCrossRef Uribe P, Wistuba II, Gonzalez S (2003) BRAF mutation: a frequent event in benign, atypical, and malignant melanocytic lesions of the skin. Am J Dermatopathol 25:365–370PubMedCrossRef
13.
go back to reference Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRef Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRef
14.
go back to reference Eisen T, Ahmad T, Flaherty KT et al (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95:581–586PubMedCrossRef Eisen T, Ahmad T, Flaherty KT et al (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95:581–586PubMedCrossRef
15.
go back to reference Flaherty KT, Schiller J, Schuchter LM et al (2008) A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res 14:4836–4842PubMedCrossRef Flaherty KT, Schiller J, Schuchter LM et al (2008) A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res 14:4836–4842PubMedCrossRef
16.
go back to reference Hauschild A, Agarwala SS, Trefzer U et al (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27:2823–2830PubMedCrossRef Hauschild A, Agarwala SS, Trefzer U et al (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27:2823–2830PubMedCrossRef
17.
go back to reference Flaherty KT, Lee SJ, Schuchter LM et al (2010) Final results of E2603: a double-blind, randomized phase III trial comparing carboplatin/paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol 28:8511 Flaherty KT, Lee SJ, Schuchter LM et al (2010) Final results of E2603: a double-blind, randomized phase III trial comparing carboplatin/paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol 28:8511
18.
go back to reference Ott PA, Hamilton A, Min C et al (2010) A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 5:e15588PubMedCrossRef Ott PA, Hamilton A, Min C et al (2010) A phase II trial of sorafenib in metastatic melanoma with tissue correlates. PLoS One 5:e15588PubMedCrossRef
19.
go back to reference Bollag G, Hirth P, Tsai J et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599PubMedCrossRef Bollag G, Hirth P, Tsai J et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599PubMedCrossRef
20.
go back to reference Heidorn SJ, Milagre C, Whittaker S et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221PubMedCrossRef Heidorn SJ, Milagre C, Whittaker S et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221PubMedCrossRef
21.
go back to reference Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430PubMedCrossRef Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430PubMedCrossRef
22.
go back to reference Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRef Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRef
23.
go back to reference Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714PubMedCrossRef Sosman JA, Kim KB, Schuchter L et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714PubMedCrossRef
24.
go back to reference Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRef Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRef
25.
go back to reference McArthur GA, Puzanov I, Amaravadi R et al (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 30(14):1628–1634PubMedCrossRef McArthur GA, Puzanov I, Amaravadi R et al (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. J Clin Oncol 30(14):1628–1634PubMedCrossRef
26.
go back to reference Kim K, Flaherty KT, Chapman PB et al (2011) Pattern and outcome of disease progression in phase I study of vemurafenib in patients with metastatic melanoma (MM). J Clin Oncol 29:8519CrossRef Kim K, Flaherty KT, Chapman PB et al (2011) Pattern and outcome of disease progression in phase I study of vemurafenib in patients with metastatic melanoma (MM). J Clin Oncol 29:8519CrossRef
27.
go back to reference Trefzer U, Minor D, Ribas A et al (2011) BREAK-2: a Phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma. Pigment Cell Melanoma Res 24:1021 Trefzer U, Minor D, Ribas A et al (2011) BREAK-2: a Phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma. Pigment Cell Melanoma Res 24:1021
28.
go back to reference Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11:4182–4190PubMedCrossRef Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11:4182–4190PubMedCrossRef
29.
go back to reference von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491CrossRef von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491CrossRef
30.
go back to reference Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73PubMedCrossRef Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73PubMedCrossRef
31.
go back to reference Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRef Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRef
32.
go back to reference Johannessen CM, Boehm JS, Kim SY et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972PubMedCrossRef Johannessen CM, Boehm JS, Kim SY et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972PubMedCrossRef
33.
go back to reference Poulikakos PI, Persaud Y, Janakiraman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390PubMedCrossRef Poulikakos PI, Persaud Y, Janakiraman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390PubMedCrossRef
34.
go back to reference Shi H, Moriceau G, Kong X et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724PubMedCrossRef Shi H, Moriceau G, Kong X et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724PubMedCrossRef
35.
go back to reference McArthur GA, Ribas A, Chapman PB et al (2011) Molecular analyses from a phase I trial of vemurafenib to study mechanism of action and resistance in repeated biopsies from BRAF mutation–positive metastatic melanoma patients. J Clin Oncol 29:8502 McArthur GA, Ribas A, Chapman PB et al (2011) Molecular analyses from a phase I trial of vemurafenib to study mechanism of action and resistance in repeated biopsies from BRAF mutation–positive metastatic melanoma patients. J Clin Oncol 29:8502
36.
go back to reference Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695PubMedCrossRef Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695PubMedCrossRef
37.
go back to reference Paraiso KH, Fedorenko IV, Cantini LP et al (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–1730PubMedCrossRef Paraiso KH, Fedorenko IV, Cantini LP et al (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–1730PubMedCrossRef
38.
go back to reference Infante JR, Falchook GS, Lawrence DP et al (2011) Phase I/II study to assess safety, pharmacokinetics, and efficacy of the oral MEK 1/2 inhibitor GSK1120212 (GSK212) dosed in combination with the oral BRAF inhibitor GSK2118436 (GSK436). J Clin Oncol 29:8503 Infante JR, Falchook GS, Lawrence DP et al (2011) Phase I/II study to assess safety, pharmacokinetics, and efficacy of the oral MEK 1/2 inhibitor GSK1120212 (GSK212) dosed in combination with the oral BRAF inhibitor GSK2118436 (GSK436). J Clin Oncol 29:8503
39.
go back to reference Flaherty KI, Infante JR, Falchook G, Weber J, Daud A, Hamid O, Gonzalez R, Lawrence D, Long GV, Burris HA III; Kim KB, Kudchadkar R, Algazi A, Boasberg P, Lewis KD, Sun P, Allred A, Little S, Martin A-M, Lebowitz P, Patel K, Kefford R (2011) Phase I/II study of BRAFi GSK2118436 + MEKi GSK1120212 in patients with BRAF mutant metastatic melanoma who progressed on a prior BRAFi. In: Proceedings of the Society for Melanoma Research Flaherty KI, Infante JR, Falchook G, Weber J, Daud A, Hamid O, Gonzalez R, Lawrence D, Long GV, Burris HA III; Kim KB, Kudchadkar R, Algazi A, Boasberg P, Lewis KD, Sun P, Allred A, Little S, Martin A-M, Lebowitz P, Patel K, Kefford R (2011) Phase I/II study of BRAFi GSK2118436 + MEKi GSK1120212 in patients with BRAF mutant metastatic melanoma who progressed on a prior BRAFi. In: Proceedings of the Society for Melanoma Research
40.
go back to reference Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779PubMed Jia S, Liu Z, Zhang S et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779PubMed
42.
go back to reference Anders L, Ke N, Hydbring P, Choi Y-J, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20:620–634PubMedCrossRef Anders L, Ke N, Hydbring P, Choi Y-J, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20:620–634PubMedCrossRef
43.
go back to reference Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321PubMedCrossRef Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321PubMedCrossRef
44.
go back to reference Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377PubMedCrossRef Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377PubMedCrossRef
45.
go back to reference Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRef Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRef
46.
go back to reference Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRef Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRef
Metadata
Title
Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets
Author
Keith T. Flaherty
Publication date
01-10-2012
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 7/2012
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-012-9488-y

Other articles of this Issue 7/2012

Clinical & Experimental Metastasis 7/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine