Skip to main content
Top
Published in: Clinical & Experimental Metastasis 4/2012

01-04-2012 | Research Paper

Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis

Authors: Leah M. Cook, Xuemei Cao, Alexander E. Dowell, Michael T. Debies, Mick D. Edmonds, Benjamin H. Beck, Robert A. Kesterson, Renee A. Desmond, Andra R. Frost, Douglas R. Hurst, Danny R. Welch

Published in: Clinical & Experimental Metastasis | Issue 4/2012

Login to get access

Abstract

Morbidity and mortality of breast cancer patients are drastically increased when primary tumor cells are able to spread to distant sites and proliferate to become secondary lesions. Effective treatment of metastatic disease has been limited; therefore, an increased molecular understanding to identify biomarkers and therapeutic targets is needed. Breast cancer metastasis suppressor 1 (BRMS1) suppresses development of pulmonary metastases when expressed in a variety of cancer types, including metastatic mammary carcinoma. Little is known of Brms1 function throughout the initiation and progression of mammary carcinoma. The goal of this study was to investigate mechanisms of Brms1-mediated metastasis suppression in transgenic mice that express Brms1 using polyoma middle T oncogene-induced models. Brms1 expression did not significantly alter growth of the primary tumors. When expressed ubiquitously using a β-actin promoter, Brms1 suppressed pulmonary metastasis and promoted apoptosis of tumor cells located in the lungs but not in the mammary glands. Surprisingly, selective expression of Brms1 in the mammary gland using the MMTV promoter did not significantly block metastasis nor did it promote apoptosis in the mammary glands or lung, despite MMTV-induced expression within the lungs. These results strongly suggest that cell type-specific over-expression of Brms1 is important for Brms1-mediated metastasis suppression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Ward E, Brawley O et al (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236PubMedCrossRef Siegel R, Ward E, Brawley O et al (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236PubMedCrossRef
2.
go back to reference Cook LM, Hurst DR, Welch DR (2011) Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol 21:113–122PubMedCrossRef Cook LM, Hurst DR, Welch DR (2011) Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol 21:113–122PubMedCrossRef
3.
go back to reference Hurst DR, Welch DR (2011) Metastasis suppressor genes: at the interface between the environment and tumor cell growth. Int Rev Cell Mol Biol 286:107–180PubMedCrossRef Hurst DR, Welch DR (2011) Metastasis suppressor genes: at the interface between the environment and tumor cell growth. Int Rev Cell Mol Biol 286:107–180PubMedCrossRef
4.
go back to reference Seraj MJ, Samant RS, Verderame MF et al (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769PubMed Seraj MJ, Samant RS, Verderame MF et al (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769PubMed
5.
go back to reference Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMedCrossRef Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMedCrossRef
6.
go back to reference Zhang S, Lin QD, Di W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531PubMedCrossRef Zhang S, Lin QD, Di W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531PubMedCrossRef
7.
go back to reference Smith PW, Liu Y, Siefert SA et al (2009) Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer. Cancer Lett 276:196–203PubMedCrossRef Smith PW, Liu Y, Siefert SA et al (2009) Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer. Cancer Lett 276:196–203PubMedCrossRef
8.
go back to reference Saunders MM, Seraj MJ, Li ZY et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767PubMed Saunders MM, Seraj MJ, Li ZY et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767PubMed
9.
go back to reference Kapoor P, Saunders MM, Li Z et al (2004) Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111:693–697PubMedCrossRef Kapoor P, Saunders MM, Li Z et al (2004) Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111:693–697PubMedCrossRef
10.
go back to reference Bodenstine TM, Vaidya KS, Ismail A et al (2010) Homotypic gap junctional communication associated with metastasis suppression increases with PKA activity and is unaffected by PI3K inhibition. Cancer Res 70:10002–10011PubMedCrossRef Bodenstine TM, Vaidya KS, Ismail A et al (2010) Homotypic gap junctional communication associated with metastasis suppression increases with PKA activity and is unaffected by PI3K inhibition. Cancer Res 70:10002–10011PubMedCrossRef
11.
go back to reference DeWald DB, Torabinejad J, Samant RS et al (2005) Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 65:713–717PubMed DeWald DB, Torabinejad J, Samant RS et al (2005) Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 65:713–717PubMed
12.
go back to reference Vaidya KS, Harihar S, Stafford LJ et al (2008) Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J Biol Chem 283:28354–28360PubMedCrossRef Vaidya KS, Harihar S, Stafford LJ et al (2008) Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J Biol Chem 283:28354–28360PubMedCrossRef
13.
go back to reference Cicek M, Fukuyama R, Welch DR et al (2005) Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res 65:3586–3595PubMedCrossRef Cicek M, Fukuyama R, Welch DR et al (2005) Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res 65:3586–3595PubMedCrossRef
14.
go back to reference Samant RS, Clark DW, Fillmore RA et al (2007) Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 6:6PubMedCrossRef Samant RS, Clark DW, Fillmore RA et al (2007) Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 6:6PubMedCrossRef
15.
go back to reference Liu Y, Smith PW, Jones DR (2006) Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 26:8683–8696PubMedCrossRef Liu Y, Smith PW, Jones DR (2006) Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 26:8683–8696PubMedCrossRef
16.
go back to reference Samant RS, Seraj MJ, Saunders MM et al (2001) Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin Exp Metastasis 18:683–693CrossRef Samant RS, Seraj MJ, Saunders MM et al (2001) Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin Exp Metastasis 18:683–693CrossRef
17.
go back to reference Phadke PA, Vaidya KS, Nash KT et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172:809–817PubMedCrossRef Phadke PA, Vaidya KS, Nash KT et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172:809–817PubMedCrossRef
18.
go back to reference Meehan WJ, Samant RS, Hopper JE et al (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569PubMedCrossRef Meehan WJ, Samant RS, Hopper JE et al (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569PubMedCrossRef
19.
go back to reference Hurst DR, Xie Y, Vaidya KS et al (2008) Alterations of BRMS1–ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J Biol Chem 283:7438–7444PubMedCrossRef Hurst DR, Xie Y, Vaidya KS et al (2008) Alterations of BRMS1–ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J Biol Chem 283:7438–7444PubMedCrossRef
20.
go back to reference Cicek M, Fukuyama R, Cicek MS et al (2009) BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter. Clin Exp Metastasis 26:229–237PubMedCrossRef Cicek M, Fukuyama R, Cicek MS et al (2009) BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter. Clin Exp Metastasis 26:229–237PubMedCrossRef
21.
go back to reference Samant RS, Debies MT, Shevde LA et al (2002) Identification and characterization of murine ortholog (Brms1) of breast cancer metastasis suppressor 1 (BRMS1). Int J Cancer 97:15–20PubMedCrossRef Samant RS, Debies MT, Shevde LA et al (2002) Identification and characterization of murine ortholog (Brms1) of breast cancer metastasis suppressor 1 (BRMS1). Int J Cancer 97:15–20PubMedCrossRef
22.
go back to reference Samant RS, Debies MT, Hurst DR et al (2006) Suppression of murine mammary carcinoma metastasis by the murine ortholog of breast cancer metastasis suppressor 1 (Brms1). Cancer Lett 235:260–265PubMedCrossRef Samant RS, Debies MT, Hurst DR et al (2006) Suppression of murine mammary carcinoma metastasis by the murine ortholog of breast cancer metastasis suppressor 1 (Brms1). Cancer Lett 235:260–265PubMedCrossRef
23.
go back to reference Richmond A, Su Y (2008) Mouse xenograft models vs. GEM models for human cancer therapeutics. Dis Model Mech 1:78–82PubMedCrossRef Richmond A, Su Y (2008) Mouse xenograft models vs. GEM models for human cancer therapeutics. Dis Model Mech 1:78–82PubMedCrossRef
24.
go back to reference Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15:272–306PubMedCrossRef Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15:272–306PubMedCrossRef
25.
go back to reference Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961PubMed Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961PubMed
26.
go back to reference Lin EY, Jones JG, Li P et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126PubMedCrossRef Lin EY, Jones JG, Li P et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126PubMedCrossRef
27.
go back to reference Hurst DR, Edmonds MD, Scott GK et al (2009) Breast cancer metastasis suppressor 1 BRMS1 up-regulates miR-146 that suppresses breast cancer metastasis. Cancer Res 69:1279–1283PubMedCrossRef Hurst DR, Edmonds MD, Scott GK et al (2009) Breast cancer metastasis suppressor 1 BRMS1 up-regulates miR-146 that suppresses breast cancer metastasis. Cancer Res 69:1279–1283PubMedCrossRef
28.
go back to reference Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180PubMedCrossRef Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180PubMedCrossRef
29.
go back to reference Henrard D, Ross SR (1988) Endogenous mouse mammary tumor virus is expressed in several organs in addition to the lactating mammary gland. J Virol 62:3046–3049PubMed Henrard D, Ross SR (1988) Endogenous mouse mammary tumor virus is expressed in several organs in addition to the lactating mammary gland. J Virol 62:3046–3049PubMed
30.
go back to reference Schneider J, Gomez-Esquer F, Diaz-Gil G et al (2011) mRNA expression of the putative antimetastatic gene BRMS1 and of apoptosis-related genes in breast cancer. Cancer Genomics Proteomics 8:195–197PubMed Schneider J, Gomez-Esquer F, Diaz-Gil G et al (2011) mRNA expression of the putative antimetastatic gene BRMS1 and of apoptosis-related genes in breast cancer. Cancer Genomics Proteomics 8:195–197PubMed
31.
go back to reference Ladeda V, Adam AP, Puricelli L et al (2001) Apoptotic cell death in mammary adenocarcinoma cells is prevented by soluble factors present in the target organ of metastasis. Breast Cancer Res Treat 69:39–51PubMedCrossRef Ladeda V, Adam AP, Puricelli L et al (2001) Apoptotic cell death in mammary adenocarcinoma cells is prevented by soluble factors present in the target organ of metastasis. Breast Cancer Res Treat 69:39–51PubMedCrossRef
32.
go back to reference Cavanaugh PG, Nicolson GL (1989) Purification and some properties of a lung-derived growth factor that differentially stimulates the growth of tumor cells metastatic to the lung. Cancer Res 49:3928–3933PubMed Cavanaugh PG, Nicolson GL (1989) Purification and some properties of a lung-derived growth factor that differentially stimulates the growth of tumor cells metastatic to the lung. Cancer Res 49:3928–3933PubMed
33.
go back to reference Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656PubMedCrossRef Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656PubMedCrossRef
34.
go back to reference Wang W, Wyckoff JB, Goswami S et al (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511PubMedCrossRef Wang W, Wyckoff JB, Goswami S et al (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511PubMedCrossRef
35.
go back to reference Grum-Schwensen B, Klingelhofer J, Grigorian M et al (2010) Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 70:936–947PubMedCrossRef Grum-Schwensen B, Klingelhofer J, Grigorian M et al (2010) Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 70:936–947PubMedCrossRef
36.
go back to reference DeNardo DG, Barreto JB, Andreu P et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102PubMedCrossRef DeNardo DG, Barreto JB, Andreu P et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102PubMedCrossRef
37.
go back to reference Yang L, Huang J, Ren X et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+myeloid cells that promote metastasis. Cancer Cell 13:23–35PubMedCrossRef Yang L, Huang J, Ren X et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+myeloid cells that promote metastasis. Cancer Cell 13:23–35PubMedCrossRef
38.
go back to reference Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science (Washington, DC) 296:1046–1049CrossRef Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science (Washington, DC) 296:1046–1049CrossRef
39.
go back to reference Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef
40.
go back to reference Lifsted T, Le Voyer T, Williams M et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77:640–644PubMedCrossRef Lifsted T, Le Voyer T, Williams M et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77:640–644PubMedCrossRef
41.
go back to reference Qiu TH, Chandramouli GVR, Hunter KW et al (2004) Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 64:5973–5981PubMedCrossRef Qiu TH, Chandramouli GVR, Hunter KW et al (2004) Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 64:5973–5981PubMedCrossRef
42.
go back to reference Zhang Z, Yamashita H, Toyama T et al (2006) Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res 12:6410–6414PubMedCrossRef Zhang Z, Yamashita H, Toyama T et al (2006) Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res 12:6410–6414PubMedCrossRef
43.
go back to reference Hicks DG, Yoder BJ, Short S et al (2006) Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clin Cancer Res 12:6702–6708PubMedCrossRef Hicks DG, Yoder BJ, Short S et al (2006) Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clin Cancer Res 12:6702–6708PubMedCrossRef
44.
go back to reference Lombardi G, Di Cristofano C, Capodanno A et al (2006) High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. Int J Cancer 120:1169–1178CrossRef Lombardi G, Di Cristofano C, Capodanno A et al (2006) High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. Int J Cancer 120:1169–1178CrossRef
45.
go back to reference Metge BJ, Frost AR, King JA et al (2008) Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 25:753–763PubMedCrossRef Metge BJ, Frost AR, King JA et al (2008) Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 25:753–763PubMedCrossRef
46.
go back to reference Frolova N, Edmonds MD, Bodenstine TM et al (2009) A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumour Biol 30:148–159PubMedCrossRef Frolova N, Edmonds MD, Bodenstine TM et al (2009) A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumour Biol 30:148–159PubMedCrossRef
Metadata
Title
Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis
Authors
Leah M. Cook
Xuemei Cao
Alexander E. Dowell
Michael T. Debies
Mick D. Edmonds
Benjamin H. Beck
Robert A. Kesterson
Renee A. Desmond
Andra R. Frost
Douglas R. Hurst
Danny R. Welch
Publication date
01-04-2012
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 4/2012
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-012-9452-x

Other articles of this Issue 4/2012

Clinical & Experimental Metastasis 4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine