Skip to main content
Top
Published in: Clinical & Experimental Metastasis 6/2008

01-10-2008 | Research Paper

Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model

Authors: Haiyen E. Zhau, Valerie Odero-Marah, Hui-Wen Lue, Takeo Nomura, Ruoxiang Wang, Gina Chu, Zhi-Ren Liu, Binhua P. Zhou, Wen-Chin Huang, Leland W. K. Chung

Published in: Clinical & Experimental Metastasis | Issue 6/2008

Login to get access

Abstract

Androgen refractory cancer of the prostate (ARCaP) cells contain androgen receptor (AR) and synthesize and secrete prostate specific antigen (PSA). We isolated epithelia-like ARCaPE from parental ARCaP cells and induced them to undergo epithelial–mesenchymal transition (EMT) by exposing these cells to soluble factors including TGFβ1 plus EGF, IGF-1, β2-microglobulin (β2-m), or a bone microenvironment. The molecular and behavioral characteristics of the resultant ARCaPM were characterized extensively in comparison to the parental ARCaPE cells. In addition to expressing mesenchymal biomarkers, ARCaPM gained 100% incidence of bone metastasis. ARCaPM cells express receptor activator of NF-κB ligand (RANKL), which was shown to increase tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in culture, and when metastatic to bone in vivo. We provide evidence that RANKL expression was promoted by increased cell signaling mediated by the activation of Stat3-Snail-LIV-1. RANKL expressed by ARCaPM cells is functional both in vitro and in vivo. The lesson we learned from the ARCaP model of EMT is that activation of a specific cell signaling pathway by soluble factors can lead to increased bone turnover, mediated by enhanced RANKL expression by tumor cells, which is implicated in the high incidence of prostate cancer bone colonization. The ARCaP EMT model is highly attractive for developing new therapeutic agents to treat prostate cancer bone metastasis.
Literature
1.
go back to reference Robinson VL, Kauffman EC, Sokoloff MH et al (2004) The basic biology of metastasis. Cancer Treat Res 118:1–21PubMed Robinson VL, Kauffman EC, Sokoloff MH et al (2004) The basic biology of metastasis. Cancer Treat Res 118:1–21PubMed
2.
go back to reference Tu SM, Lin SH (2004) Clinical aspects of bone metastases in prostate cancer. Cancer Treat Res 118:23–46PubMed Tu SM, Lin SH (2004) Clinical aspects of bone metastases in prostate cancer. Cancer Treat Res 118:23–46PubMed
3.
go back to reference Wu TT, Sikes RA, Cui Q et al (1998) Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 77(6):887–894. doi:10.1002/(SICI) 1097-0215(19980911) 77:6<887::AID-IJC15>3.0.CO;2-ZPubMedCrossRef Wu TT, Sikes RA, Cui Q et al (1998) Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 77(6):887–894. doi:10.1002/(SICI) 1097-0215(19980911) 77:6<887::AID-IJC15>3.0.CO;2-ZPubMedCrossRef
4.
go back to reference Xu J, Wang R, Xie ZH et al (2006) Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate 66(15):1664–1673. doi:10.1002/pros.20488 PubMedCrossRef Xu J, Wang R, Xie ZH et al (2006) Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate 66(15):1664–1673. doi:10.​1002/​pros.​20488 PubMedCrossRef
6.
go back to reference Odero-Marah V, Shi C, Zhau HE et al (2007) Dual role of Snail transcription factor in epithelial to mesenchymal transition and neuroendocrine differentiation in human prostate cancer cells. AACR Proc 48:247 Odero-Marah V, Shi C, Zhau HE et al (2007) Dual role of Snail transcription factor in epithelial to mesenchymal transition and neuroendocrine differentiation in human prostate cancer cells. AACR Proc 48:247
7.
go back to reference Chung LW, Baseman A, Assikis V et al (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20PubMed Chung LW, Baseman A, Assikis V et al (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20PubMed
8.
go back to reference Chung LW, Huang WC, Sung SY et al (2006) Stromal–epithelial interaction in prostate cancer progression. Clin Genitourin Cancer 5(2):162–170PubMedCrossRef Chung LW, Huang WC, Sung SY et al (2006) Stromal–epithelial interaction in prostate cancer progression. Clin Genitourin Cancer 5(2):162–170PubMedCrossRef
12.
go back to reference Brabletz T, Hlubek F, Spaderna S et al (2005) Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2):56–65. doi:10.1159/000084509 PubMedCrossRef Brabletz T, Hlubek F, Spaderna S et al (2005) Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2):56–65. doi:10.​1159/​000084509 PubMedCrossRef
17.
go back to reference Albalate M, de la Piedra C, Fernandez C et al (2006) Association between phosphate removal and markers of bone turnover in haemodialysis patients. Nephrology Dialysis Transplantation 21(6):1626–1632. doi:10.1093/ndt/gfl034 CrossRef Albalate M, de la Piedra C, Fernandez C et al (2006) Association between phosphate removal and markers of bone turnover in haemodialysis patients. Nephrology Dialysis Transplantation 21(6):1626–1632. doi:10.​1093/​ndt/​gfl034 CrossRef
18.
go back to reference Graham T R ZHE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM (2008) IGF-1-dependent upregulation of ZEB1 expression drives EMT in human prostate cancer cells in vitro. Cancer Res 68(7):2479–2488 Graham T R ZHE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM (2008) IGF-1-dependent upregulation of ZEB1 expression drives EMT in human prostate cancer cells in vitro. Cancer Res 68(7):2479–2488
19.
go back to reference Gleave M, Hsieh JT, Gao CA et al (1991) Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 51(14):3753–3761PubMed Gleave M, Hsieh JT, Gao CA et al (1991) Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 51(14):3753–3761PubMed
20.
go back to reference Thalmann GN, Sikes RA, Wu TT et al (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44(2):91–103 Thalmann GN, Sikes RA, Wu TT et al (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44(2):91–103
22.
go back to reference Zhou BP, Deng J, Xia W et al (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6(10):931–940. doi:10.1038/ncb1173 PubMedCrossRef Zhou BP, Deng J, Xia W et al (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6(10):931–940. doi:10.​1038/​ncb1173 PubMedCrossRef
23.
go back to reference Takahashi N, Akatsu T, Udagawa N et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123(5):2600–2602PubMed Takahashi N, Akatsu T, Udagawa N et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123(5):2600–2602PubMed
24.
go back to reference Fichtner-Feigl S, Strober W, Kawakami K et al (2006) IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 12(1):99–106. doi:10.1038/nm1332 PubMedCrossRef Fichtner-Feigl S, Strober W, Kawakami K et al (2006) IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 12(1):99–106. doi:10.​1038/​nm1332 PubMedCrossRef
28.
go back to reference Armstrong AP, Miller RE, Jones JC et al (2008) RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68(1):92–104. doi:10.1002/pros.20678 PubMedCrossRef Armstrong AP, Miller RE, Jones JC et al (2008) RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68(1):92–104. doi:10.​1002/​pros.​20678 PubMedCrossRef
31.
go back to reference Chamulitrat W, Schmidt R, Chunglok W et al (2003) Epithelium and fibroblast-like phenotypes derived from HPV16 E6/E7-immortalized human gingival keratinocytes following chronic ethanol treatment. Eur J Cell Biol 82(6):313–322. doi:10.1078/0171-9335-00317 PubMedCrossRef Chamulitrat W, Schmidt R, Chunglok W et al (2003) Epithelium and fibroblast-like phenotypes derived from HPV16 E6/E7-immortalized human gingival keratinocytes following chronic ethanol treatment. Eur J Cell Biol 82(6):313–322. doi:10.​1078/​0171-9335-00317 PubMedCrossRef
34.
35.
go back to reference Arnold RCL, Farah-Carson MC et al (2008) Prostate cancer bone metastasis: reactive oxygen species, growth factors and heparan sulfate proteoglycans provide a signaling triad that supports progression. J Urol 179(Suppl 4):192 Arnold RCL, Farah-Carson MC et al (2008) Prostate cancer bone metastasis: reactive oxygen species, growth factors and heparan sulfate proteoglycans provide a signaling triad that supports progression. J Urol 179(Suppl 4):192
37.
go back to reference Vincan E, Brabletz T, Faux MC et al (2007) A human three-dimensional cell line model allows the study of dynamic and reversible epithelial–mesenchymal and mesenchymal–epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs 185(1–3):20–28. doi:10.1159/000101299 PubMedCrossRef Vincan E, Brabletz T, Faux MC et al (2007) A human three-dimensional cell line model allows the study of dynamic and reversible epithelial–mesenchymal and mesenchymal–epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs 185(1–3):20–28. doi:10.​1159/​000101299 PubMedCrossRef
38.
go back to reference Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial–mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11(22):8006–8014. doi:10.1158/1078-0432.CCR-05-0632 PubMedCrossRef Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial–mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11(22):8006–8014. doi:10.​1158/​1078-0432.​CCR-05-0632 PubMedCrossRef
39.
go back to reference Cat B, Stuhlmann D, Steinbrenner H et al (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119(Pt 13):2727–2738. doi:10.1242/jcs.03011 PubMedCrossRef Cat B, Stuhlmann D, Steinbrenner H et al (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119(Pt 13):2727–2738. doi:10.​1242/​jcs.​03011 PubMedCrossRef
Metadata
Title
Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model
Authors
Haiyen E. Zhau
Valerie Odero-Marah
Hui-Wen Lue
Takeo Nomura
Ruoxiang Wang
Gina Chu
Zhi-Ren Liu
Binhua P. Zhou
Wen-Chin Huang
Leland W. K. Chung
Publication date
01-10-2008
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 6/2008
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-008-9183-1

Other articles of this Issue 6/2008

Clinical & Experimental Metastasis 6/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine