Skip to main content
Top
Published in: Clinical & Experimental Metastasis 1/2009

01-01-2009 | Review

Epigenetic contributions to cancer metastasis

Author: David I. Rodenhiser

Published in: Clinical & Experimental Metastasis | Issue 1/2009

Login to get access

Abstract

The molecular basis of cancer encompasses both genetic and epigenetic alterations. These epigenetic changes primarily involve global DNA methylation changes in the form of widespread loss of methylation along with concurrent hypermethylation events in gene regulatory regions that can repress tissue-specific gene expression. Increasingly, the importance of these epigenetic changes to the metastatic process is being realized. Cells may acquire an epi-genotype that permits their dissemination from the primary tumour mass or the ability to survive and proliferate at a secondary tissue site. These epigenetic changes may be cancer-type specific, or in some cases may involve a common target gene providing a selective advantage to multiple metastatic cell types. In this review, I examine the growing volume of literature related to the epigenetic contributions to cancer metastasis. I discuss the functional importance of these epigenetic phenomena and how new epigenetic biomarkers may permit the identification of diagnostic signatures of metastasis and the development of new cancer therapies.
Literature
2.
go back to reference Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRef Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRef
3.
go back to reference Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRef Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRef
4.
go back to reference Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRef Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRef
5.
go back to reference Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRef Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRef
6.
go back to reference Allan AL, Vantyghem SA, Tuck AB et al (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98PubMed Allan AL, Vantyghem SA, Tuck AB et al (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98PubMed
7.
go back to reference Welch DR (2004) Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Res 6:61–64PubMedCrossRef Welch DR (2004) Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Res 6:61–64PubMedCrossRef
8.
go back to reference Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298PubMedCrossRef Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298PubMedCrossRef
12.
go back to reference Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:341–348PubMed Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:341–348PubMed
14.
15.
go back to reference Esteller M, Corn PG, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMed Esteller M, Corn PG, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMed
16.
go back to reference Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedCrossRef Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedCrossRef
17.
go back to reference Brena RM, Costello JF (2007) Genome-epigenome interactions in cancer. Hum Mol Genet 16(Spec No 1):R96–R105PubMedCrossRef Brena RM, Costello JF (2007) Genome-epigenome interactions in cancer. Hum Mol Genet 16(Spec No 1):R96–R105PubMedCrossRef
19.
go back to reference Agrawal A, Murphy RF, Agrawal DK (2007) DNA methylation in breast and colorectal cancers. Mod Pathol 20:711–721PubMedCrossRef Agrawal A, Murphy RF, Agrawal DK (2007) DNA methylation in breast and colorectal cancers. Mod Pathol 20:711–721PubMedCrossRef
20.
go back to reference Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162PubMed Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162PubMed
21.
go back to reference Miremadi A, Oestergaard MZ, Pharoah PD et al (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(Spec No 1):R28–R49PubMedCrossRef Miremadi A, Oestergaard MZ, Pharoah PD et al (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(Spec No 1):R28–R49PubMedCrossRef
22.
23.
go back to reference Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8PubMedCrossRef Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8PubMedCrossRef
24.
go back to reference Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 13:511–519PubMed Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 13:511–519PubMed
25.
go back to reference Steeg PS, Ouatas T, Halverson D et al (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4:51–62PubMedCrossRef Steeg PS, Ouatas T, Halverson D et al (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4:51–62PubMedCrossRef
26.
go back to reference Palmieri D, Horak CE, Lee JH et al (2006) Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 38:151–161PubMedCrossRef Palmieri D, Horak CE, Lee JH et al (2006) Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 38:151–161PubMedCrossRef
27.
go back to reference Stark AM, Tongers K, Maass N et al (2005) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198PubMedCrossRef Stark AM, Tongers K, Maass N et al (2005) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198PubMedCrossRef
28.
go back to reference Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMedCrossRef Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMedCrossRef
29.
go back to reference Uzawa K, Ono K, Suzuki H et al (2002) High prevalence of decreased expression of KAI1 metastasis suppressor in human oral carcinogenesis. Clin Cancer Res 8:828–835PubMed Uzawa K, Ono K, Suzuki H et al (2002) High prevalence of decreased expression of KAI1 metastasis suppressor in human oral carcinogenesis. Clin Cancer Res 8:828–835PubMed
30.
go back to reference Harms JF, Welch DR, Miele ME (2003) KISS1 metastasis suppression and emergent pathways. Clin Exp Metastasis 20:11–18PubMedCrossRef Harms JF, Welch DR, Miele ME (2003) KISS1 metastasis suppression and emergent pathways. Clin Exp Metastasis 20:11–18PubMedCrossRef
31.
go back to reference Gildea JJ, Seraj MJ, Oxford G et al (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMed Gildea JJ, Seraj MJ, Oxford G et al (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMed
32.
go back to reference Goncharuk VN, del-Rosario A, Kren L et al (2004) Co-downregulation of PTEN, KAI-1, and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Ann Diagn Pathol 8:6–16PubMedCrossRef Goncharuk VN, del-Rosario A, Kren L et al (2004) Co-downregulation of PTEN, KAI-1, and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Ann Diagn Pathol 8:6–16PubMedCrossRef
33.
go back to reference van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRef van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRef
34.
go back to reference Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed
35.
go back to reference Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRef Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRef
36.
go back to reference Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMed Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMed
37.
go back to reference Eccles S, Paon L, Sleeman J (2007) Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 24:619–636PubMedCrossRef Eccles S, Paon L, Sleeman J (2007) Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 24:619–636PubMedCrossRef
38.
go back to reference Steeg PS (2005) New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166:1291–1294PubMed Steeg PS (2005) New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166:1291–1294PubMed
39.
go back to reference Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRef Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRef
40.
go back to reference Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRef Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRef
41.
go back to reference Woelfle U, Cloos J, Sauter G et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63:5679–5684PubMed Woelfle U, Cloos J, Sauter G et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63:5679–5684PubMed
42.
go back to reference Hao X, Sun B, Hu L et al (2004) Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 100:1110–1122PubMedCrossRef Hao X, Sun B, Hu L et al (2004) Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 100:1110–1122PubMedCrossRef
43.
go back to reference Kwon HC, Kim SH, Roh MS et al (2004) Gene expression profiling in lymph node-positive and lymph node-negative colorectal cancer. Dis Colon Rectum 47:141–152PubMedCrossRef Kwon HC, Kim SH, Roh MS et al (2004) Gene expression profiling in lymph node-positive and lymph node-negative colorectal cancer. Dis Colon Rectum 47:141–152PubMedCrossRef
44.
go back to reference Bandyopadhyay A, Elkahloun A, Baysa SJ et al (2005) Development and gene expression profiling of a metastatic variant of the human breast cancer MDA-MB-435 cells. Cancer Biol Ther 4:168–174PubMedCrossRef Bandyopadhyay A, Elkahloun A, Baysa SJ et al (2005) Development and gene expression profiling of a metastatic variant of the human breast cancer MDA-MB-435 cells. Cancer Biol Ther 4:168–174PubMedCrossRef
45.
go back to reference Van den Eynden GG, Van Laere SJ, Van der Auwera I et al (2007) Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer. Clin Exp Metastasis 24:13–23PubMedCrossRef Van den Eynden GG, Van Laere SJ, Van der Auwera I et al (2007) Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer. Clin Exp Metastasis 24:13–23PubMedCrossRef
46.
go back to reference Roepman P, de Koning E, van Leenen D et al (2006) Dissection of a metastatic gene expression signature into distinct components. Genome Biol 7:R117PubMedCrossRef Roepman P, de Koning E, van Leenen D et al (2006) Dissection of a metastatic gene expression signature into distinct components. Genome Biol 7:R117PubMedCrossRef
47.
go back to reference Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRef Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRef
48.
go back to reference Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997PubMedCrossRef Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997PubMedCrossRef
49.
go back to reference Nixdorf S, Grimm MO, Loberg R et al (2004) Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 215:209–220PubMedCrossRef Nixdorf S, Grimm MO, Loberg R et al (2004) Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 215:209–220PubMedCrossRef
50.
go back to reference Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110PubMedCrossRef Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110PubMedCrossRef
51.
go back to reference Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27:1461–1471PubMedCrossRef Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27:1461–1471PubMedCrossRef
52.
go back to reference Shi B, Vinyals A, Alia P et al (2006) Differential expression of MHC class II molecules in highly metastatic breast cancer cells is mediated by the regulation of the CIITA transcription Implication of CIITA in tumor and metastasis development. Int J Biochem Cell Biol 38:544–562PubMedCrossRef Shi B, Vinyals A, Alia P et al (2006) Differential expression of MHC class II molecules in highly metastatic breast cancer cells is mediated by the regulation of the CIITA transcription Implication of CIITA in tumor and metastasis development. Int J Biochem Cell Biol 38:544–562PubMedCrossRef
53.
go back to reference Pakneshan P, Szyf M, Farias-Eisner R et al (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735–31744PubMedCrossRef Pakneshan P, Szyf M, Farias-Eisner R et al (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735–31744PubMedCrossRef
54.
go back to reference Nam JS, Ino Y, Kanai Y et al (2004) 5-aza-2′-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin Exp Metastasis 21:49–56PubMedCrossRef Nam JS, Ino Y, Kanai Y et al (2004) 5-aza-2′-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin Exp Metastasis 21:49–56PubMedCrossRef
55.
go back to reference Skliris GP, Munot K, Bell SM et al (2003) Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 201:213–220PubMedCrossRef Skliris GP, Munot K, Bell SM et al (2003) Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 201:213–220PubMedCrossRef
56.
go back to reference Rivenbark AG, Livasy CA, Boyd CE et al (2007) Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. Exp Mol Pathol 83:188–197PubMedCrossRef Rivenbark AG, Livasy CA, Boyd CE et al (2007) Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. Exp Mol Pathol 83:188–197PubMedCrossRef
57.
go back to reference Fabianowska-Majewska K, Kordek R, Krawczyk B (2006) Studies on the methylation status of CpG sequences located in promoters of selected tumour suppressor genes in breast cancer cells. Nucleosides Nucleotides Nucleic Acids 25:1025–1028PubMedCrossRef Fabianowska-Majewska K, Kordek R, Krawczyk B (2006) Studies on the methylation status of CpG sequences located in promoters of selected tumour suppressor genes in breast cancer cells. Nucleosides Nucleotides Nucleic Acids 25:1025–1028PubMedCrossRef
58.
go back to reference Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME et al (2007) DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. doi:10.1007/s10549-007-9800-8 Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME et al (2007) DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. doi:10.​1007/​s10549-007-9800-8
59.
go back to reference Veeck J, Chorovicer M, Naami A et al (2008) The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 27:865–876PubMedCrossRef Veeck J, Chorovicer M, Naami A et al (2008) The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 27:865–876PubMedCrossRef
60.
go back to reference Umetani N, Mori T, Koyanagi K et al (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727PubMedCrossRef Umetani N, Mori T, Koyanagi K et al (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727PubMedCrossRef
61.
go back to reference Murata H, Khattar NH, Gu L et al (2005) Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett 223:143–150PubMedCrossRef Murata H, Khattar NH, Gu L et al (2005) Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett 223:143–150PubMedCrossRef
62.
go back to reference Takahashi Y, Miyoshi Y, Takahata C et al (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385PubMedCrossRef Takahashi Y, Miyoshi Y, Takahata C et al (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385PubMedCrossRef
63.
go back to reference Osanai T, Takagi Y, Toriya Y et al (2005) Inverse correlation between the expression of O6-methylguanine-DNA methyl transferase (MGMT) and p53 in breast cancer. Jpn J Clin Oncol 35:121–125PubMedCrossRef Osanai T, Takagi Y, Toriya Y et al (2005) Inverse correlation between the expression of O6-methylguanine-DNA methyl transferase (MGMT) and p53 in breast cancer. Jpn J Clin Oncol 35:121–125PubMedCrossRef
64.
go back to reference Li X, Cowell JK, Sossey-Alaoui K (2004) CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23:1474–1480PubMedCrossRef Li X, Cowell JK, Sossey-Alaoui K (2004) CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23:1474–1480PubMedCrossRef
65.
go back to reference Yang D, Thangaraju M, Greeneltch K et al (2007) Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Res 67:3301–3309PubMedCrossRef Yang D, Thangaraju M, Greeneltch K et al (2007) Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Res 67:3301–3309PubMedCrossRef
66.
go back to reference Hu XC, Wong IH, Chow LW (2003) Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep 10:1811–1815PubMed Hu XC, Wong IH, Chow LW (2003) Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep 10:1811–1815PubMed
67.
go back to reference Lui EL, Loo WT, Zhu L et al (2005) DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomed Pharmacother 59(Suppl 2):S363–S365PubMedCrossRef Lui EL, Loo WT, Zhu L et al (2005) DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomed Pharmacother 59(Suppl 2):S363–S365PubMedCrossRef
68.
go back to reference Mehrotra J, Vali M, McVeigh M et al (2004) Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 10:3104–3109PubMedCrossRef Mehrotra J, Vali M, McVeigh M et al (2004) Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 10:3104–3109PubMedCrossRef
69.
go back to reference Shinozaki M, Hoon DS, Giuliano AE et al (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162PubMedCrossRef Shinozaki M, Hoon DS, Giuliano AE et al (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162PubMedCrossRef
70.
go back to reference Mimori K, Kataoka A, Yoshinaga K et al (2005) Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin Exp Metastasis 22:59–67PubMedCrossRef Mimori K, Kataoka A, Yoshinaga K et al (2005) Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin Exp Metastasis 22:59–67PubMedCrossRef
71.
go back to reference Cavalli LR, Urban CA, Dai D et al (2003) Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genet Cytogenet 146:33–40PubMedCrossRef Cavalli LR, Urban CA, Dai D et al (2003) Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genet Cytogenet 146:33–40PubMedCrossRef
72.
go back to reference Caldeira JR, Prando EC, Quevedo FC et al (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48PubMedCrossRef Caldeira JR, Prando EC, Quevedo FC et al (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48PubMedCrossRef
73.
go back to reference Nakayama H, Sano T, Motegi A et al (2005) Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 55:707–715PubMedCrossRef Nakayama H, Sano T, Motegi A et al (2005) Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 55:707–715PubMedCrossRef
74.
go back to reference Hong SM, Choi J, Ryu K et al (2006) Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med 130:33–38PubMed Hong SM, Choi J, Ryu K et al (2006) Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med 130:33–38PubMed
75.
go back to reference Kim BH, Cho NY, Choi M et al (2007) Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Arch Pathol Lab Med 131:923–930PubMed Kim BH, Cho NY, Choi M et al (2007) Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Arch Pathol Lab Med 131:923–930PubMed
76.
go back to reference Wendt MK, Johanesen PA, Kang-Decker N et al (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25:4986–4997PubMedCrossRef Wendt MK, Johanesen PA, Kang-Decker N et al (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25:4986–4997PubMedCrossRef
77.
go back to reference Semba S, Itoh N, Ito M et al (2002) Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Res 8:3824–3831PubMed Semba S, Itoh N, Ito M et al (2002) Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Res 8:3824–3831PubMed
78.
go back to reference Lee M, Sup Han W, Kyoung Kim O et al (2006) Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract 202:415–424PubMedCrossRef Lee M, Sup Han W, Kyoung Kim O et al (2006) Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract 202:415–424PubMedCrossRef
79.
go back to reference Umetani N, Fujimoto A, Takeuchi H et al (2004) Allelic imbalance of APAF-1 locus at 12q23 is related to progression of colorectal carcinoma. Oncogene 23:8292–8300PubMedCrossRef Umetani N, Fujimoto A, Takeuchi H et al (2004) Allelic imbalance of APAF-1 locus at 12q23 is related to progression of colorectal carcinoma. Oncogene 23:8292–8300PubMedCrossRef
80.
go back to reference Ebert MP, Mooney SH, Tonnes-Priddy L et al (2005) Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia 7:771–778PubMedCrossRef Ebert MP, Mooney SH, Tonnes-Priddy L et al (2005) Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia 7:771–778PubMedCrossRef
81.
go back to reference Tang M, Torres-Lanzas J, Lopez-Rios F et al (2006) Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer 119:2603–2606PubMedCrossRef Tang M, Torres-Lanzas J, Lopez-Rios F et al (2006) Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer 119:2603–2606PubMedCrossRef
82.
go back to reference Fu L, Qin YR, Xie D et al (2007) Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res 67:10720–10726PubMedCrossRef Fu L, Qin YR, Xie D et al (2007) Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res 67:10720–10726PubMedCrossRef
83.
go back to reference Onda T, Uzawa K, Nakashima D et al (2007) Lin-7C/VELI3/MALS-3: an essential component in metastasis of human squamous cell carcinoma. Cancer Res 67:9643–9648PubMedCrossRef Onda T, Uzawa K, Nakashima D et al (2007) Lin-7C/VELI3/MALS-3: an essential component in metastasis of human squamous cell carcinoma. Cancer Res 67:9643–9648PubMedCrossRef
84.
go back to reference Ito S, Ohga T, Saeki H et al (2007) Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and pl6INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27:3345–3353PubMed Ito S, Ohga T, Saeki H et al (2007) Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and pl6INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27:3345–3353PubMed
85.
go back to reference Zhang C, Li K, Wei L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60:1249–1253PubMedCrossRef Zhang C, Li K, Wei L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60:1249–1253PubMedCrossRef
86.
go back to reference Liu WT, Jiao HL, Yang YL et al (2007) Correlation of E-cadherin hypermethylation to tumorigenesis and development of gastric cancer. Ai Zheng 26:1199–1203PubMed Liu WT, Jiao HL, Yang YL et al (2007) Correlation of E-cadherin hypermethylation to tumorigenesis and development of gastric cancer. Ai Zheng 26:1199–1203PubMed
87.
go back to reference Yi Kim D, Kyoon Joo J, Kyu Park Y et al (2007) E-cadherin expression in early gastric carcinoma and correlation with lymph node metastasis. J Surg Oncol 96:429–435PubMedCrossRef Yi Kim D, Kyoon Joo J, Kyu Park Y et al (2007) E-cadherin expression in early gastric carcinoma and correlation with lymph node metastasis. J Surg Oncol 96:429–435PubMedCrossRef
88.
go back to reference Wang J, Li G, Ma H et al (2007) Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol 38:1649–1656PubMedCrossRef Wang J, Li G, Ma H et al (2007) Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol 38:1649–1656PubMedCrossRef
89.
go back to reference Kim SK, Jang HR, Kim JH et al (2006) The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration. Biochem Biophys Res Commun 349:1032–1040PubMedCrossRef Kim SK, Jang HR, Kim JH et al (2006) The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration. Biochem Biophys Res Commun 349:1032–1040PubMedCrossRef
90.
go back to reference Chan AW, Chan MW, Lee TL et al (2005) Promoter hypermethylation of Death-associated protein-kinase gene associated with advance stage gastric cancer. Oncol Rep 13:937–941PubMed Chan AW, Chan MW, Lee TL et al (2005) Promoter hypermethylation of Death-associated protein-kinase gene associated with advance stage gastric cancer. Oncol Rep 13:937–941PubMed
91.
go back to reference Wei D, Gong W, Kanai M et al (2005) Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 65:2746–2754PubMedCrossRef Wei D, Gong W, Kanai M et al (2005) Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 65:2746–2754PubMedCrossRef
92.
go back to reference Ebert MP, Yu J, Hoffmann J et al (2003) Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol 21:1708–1714PubMedCrossRef Ebert MP, Yu J, Hoffmann J et al (2003) Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol 21:1708–1714PubMedCrossRef
93.
go back to reference Oshimo Y, Kuraoka K, Nakayama H et al (2004) Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112:1003–1009PubMedCrossRef Oshimo Y, Kuraoka K, Nakayama H et al (2004) Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112:1003–1009PubMedCrossRef
94.
go back to reference Wang S, Ding YB, Chen GY et al (2004) Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma. World J Gastroenterol 10:1815–1818PubMed Wang S, Ding YB, Chen GY et al (2004) Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma. World J Gastroenterol 10:1815–1818PubMed
95.
go back to reference Chen J, Rocken C, Klein-Hitpass L et al (2004) Microarray analysis of gene expression in metastatic gastric cancer cells after incubation with the methylation inhibitor 5-aza-2’-deoxycytidine. Clin Exp Metastasis 21:389–397PubMedCrossRef Chen J, Rocken C, Klein-Hitpass L et al (2004) Microarray analysis of gene expression in metastatic gastric cancer cells after incubation with the methylation inhibitor 5-aza-2’-deoxycytidine. Clin Exp Metastasis 21:389–397PubMedCrossRef
96.
go back to reference Taniguchi H, Yamamoto H, Akutsu N et al (2007) Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer. J Pathol 213:131–139PubMedCrossRef Taniguchi H, Yamamoto H, Akutsu N et al (2007) Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer. J Pathol 213:131–139PubMedCrossRef
97.
go back to reference Nakamura M, Ishida E, Shimada K et al (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175PubMedCrossRef Nakamura M, Ishida E, Shimada K et al (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175PubMedCrossRef
98.
go back to reference Smiraglia DJ, Smith LT, Lang JC et al (2003) Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40:25–33PubMedCrossRef Smiraglia DJ, Smith LT, Lang JC et al (2003) Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40:25–33PubMedCrossRef
99.
go back to reference Lee MN, Tseng RC, Hsu HS et al (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13:832–838PubMedCrossRef Lee MN, Tseng RC, Hsu HS et al (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13:832–838PubMedCrossRef
100.
go back to reference Harden SV, Tokumaru Y, Westra WH et al (2003) Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 9:1370–1375PubMed Harden SV, Tokumaru Y, Westra WH et al (2003) Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 9:1370–1375PubMed
101.
go back to reference Chakraborty AK, Sousa Jde F, Chakraborty D et al (2006) GnT-V expression and metastatic phenotypes in macrophage-melanoma fusion hybrids is down-regulated by 5-Aza-dC: evidence for methylation sensitive, extragenic regulation of GnT-V transcription. Gene 374:166–173PubMedCrossRef Chakraborty AK, Sousa Jde F, Chakraborty D et al (2006) GnT-V expression and metastatic phenotypes in macrophage-melanoma fusion hybrids is down-regulated by 5-Aza-dC: evidence for methylation sensitive, extragenic regulation of GnT-V transcription. Gene 374:166–173PubMedCrossRef
102.
go back to reference Lung HL, Bangarusamy DK, Xie D et al (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24:6525–6532PubMed Lung HL, Bangarusamy DK, Xie D et al (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24:6525–6532PubMed
103.
go back to reference Kudo Y, Kitajima S, Ogawa I et al (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10:5455–5463PubMedCrossRef Kudo Y, Kitajima S, Ogawa I et al (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10:5455–5463PubMedCrossRef
104.
go back to reference Ishida E, Nakamura M, Ikuta M et al (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41:614–622PubMedCrossRef Ishida E, Nakamura M, Ikuta M et al (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41:614–622PubMedCrossRef
105.
go back to reference Makarla PB, Saboorian MH, Ashfaq R et al (2005) Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res 11:5365–5369PubMedCrossRef Makarla PB, Saboorian MH, Ashfaq R et al (2005) Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res 11:5365–5369PubMedCrossRef
106.
go back to reference House MG, Guo M, Efron DT et al (2003) Tumor suppressor gene hypermethylation as a predictor of gastric stromal tumor behavior. J Gastrointest Surg 7:1004–1014. Discussion 1014PubMedCrossRef House MG, Guo M, Efron DT et al (2003) Tumor suppressor gene hypermethylation as a predictor of gastric stromal tumor behavior. J Gastrointest Surg 7:1004–1014. Discussion 1014PubMedCrossRef
107.
go back to reference Pulukuri SM, Patibandla S, Patel J et al (2007) Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 26:5229–5237PubMedCrossRef Pulukuri SM, Patibandla S, Patel J et al (2007) Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 26:5229–5237PubMedCrossRef
108.
go back to reference Zhu X, Leav I, Leung YK et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012PubMed Zhu X, Leav I, Leung YK et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012PubMed
109.
go back to reference Kelavkar UP, Harya NS, Hutzley J et al (2007) DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat 82:185–197PubMedCrossRef Kelavkar UP, Harya NS, Hutzley J et al (2007) DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat 82:185–197PubMedCrossRef
110.
go back to reference Bastian PJ, Ellinger J, Wellmann A et al (2005) Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11:4097–4106PubMedCrossRef Bastian PJ, Ellinger J, Wellmann A et al (2005) Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11:4097–4106PubMedCrossRef
111.
go back to reference Yegnasubramanian S, Kowalski J, Gonzalgo ML et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986PubMedCrossRef Yegnasubramanian S, Kowalski J, Gonzalgo ML et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986PubMedCrossRef
112.
go back to reference Kasahara T, Bilim V, Hara N et al (2006) Homozygous deletions of the INK4a/ARF locus in renal cell cancer. Anticancer Res 26:4299–4305PubMed Kasahara T, Bilim V, Hara N et al (2006) Homozygous deletions of the INK4a/ARF locus in renal cell cancer. Anticancer Res 26:4299–4305PubMed
113.
go back to reference Yamada D, Kikuchi S, Williams YN et al (2006) Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118:916–923PubMedCrossRef Yamada D, Kikuchi S, Williams YN et al (2006) Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118:916–923PubMedCrossRef
114.
go back to reference Boltze C, Schneider-Stock R, Quednow C et al (2003) Silencing of the maspin gene by promoter hypermethylation in thyroid cancer. Int J Mol Med 12:479–484PubMed Boltze C, Schneider-Stock R, Quednow C et al (2003) Silencing of the maspin gene by promoter hypermethylation in thyroid cancer. Int J Mol Med 12:479–484PubMed
115.
go back to reference van der Velden PA, Zuidervaart W, Hurks MH et al (2003) Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int J Cancer 106:472–479PubMedCrossRef van der Velden PA, Zuidervaart W, Hurks MH et al (2003) Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int J Cancer 106:472–479PubMedCrossRef
116.
go back to reference Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2003) Frequent death-associated protein-kinase promoter hypermethylation in brain metastases of solid tumors. Oncol Rep 10:1031–1033PubMed Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2003) Frequent death-associated protein-kinase promoter hypermethylation in brain metastases of solid tumors. Oncol Rep 10:1031–1033PubMed
117.
go back to reference Tan SH, Ida H, Goh BC et al (2006) Analyses of promoter hypermethylation for RUNX3 and other tumor suppressor genes in nasopharyngeal carcinoma. Anticancer Res 26:4287–4292PubMed Tan SH, Ida H, Goh BC et al (2006) Analyses of promoter hypermethylation for RUNX3 and other tumor suppressor genes in nasopharyngeal carcinoma. Anticancer Res 26:4287–4292PubMed
118.
go back to reference Pellise M, Castells A, Gines A et al (2004) Detection of lymph node micrometastases by gene promoter hypermethylation in samples obtained by endosonography- guided fine-needle aspiration biopsy. Clin Cancer Res 10:4444–4449PubMedCrossRef Pellise M, Castells A, Gines A et al (2004) Detection of lymph node micrometastases by gene promoter hypermethylation in samples obtained by endosonography- guided fine-needle aspiration biopsy. Clin Cancer Res 10:4444–4449PubMedCrossRef
119.
go back to reference Yamashita K, Park HL, Kim MS et al (2006) PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res 66:3921–3927PubMedCrossRef Yamashita K, Park HL, Kim MS et al (2006) PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res 66:3921–3927PubMedCrossRef
120.
go back to reference Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24:575–585PubMedCrossRef Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24:575–585PubMedCrossRef
121.
go back to reference Takayama T, Miyanishi K, Hayashi T et al (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192PubMedCrossRef Takayama T, Miyanishi K, Hayashi T et al (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192PubMedCrossRef
122.
go back to reference Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537PubMedCrossRef Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537PubMedCrossRef
123.
go back to reference Vogiatzi P, Vindigni C, Roviello F et al (2007) Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol 211:287–295PubMedCrossRef Vogiatzi P, Vindigni C, Roviello F et al (2007) Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol 211:287–295PubMedCrossRef
124.
go back to reference Jee CD, Lee HS, Bae SI et al (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol 26:1265–1271PubMed Jee CD, Lee HS, Bae SI et al (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol 26:1265–1271PubMed
125.
go back to reference Nelson WG, Yegnasubramanian S, Agoston AT et al (2007) Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 12:4254–4266PubMedCrossRef Nelson WG, Yegnasubramanian S, Agoston AT et al (2007) Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 12:4254–4266PubMedCrossRef
126.
go back to reference Yu J, Yu J, Rhodes DR et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663PubMedCrossRef Yu J, Yu J, Rhodes DR et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663PubMedCrossRef
127.
go back to reference Beke L, Nuytten M, Van Eynde A et al (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26:4590–4595PubMedCrossRef Beke L, Nuytten M, Van Eynde A et al (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26:4590–4595PubMedCrossRef
128.
go back to reference Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444PubMedCrossRef Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444PubMedCrossRef
129.
go back to reference Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRef Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRef
130.
go back to reference Berezovska OP, Glinskii AB, Yang Z et al (2006) Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5:1886–1901PubMed Berezovska OP, Glinskii AB, Yang Z et al (2006) Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5:1886–1901PubMed
131.
go back to reference Cho KS, Oh HY, Lee EJ et al (2007) Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: a preliminary study. Yonsei Med J 48:1009–1014PubMedCrossRef Cho KS, Oh HY, Lee EJ et al (2007) Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: a preliminary study. Yonsei Med J 48:1009–1014PubMedCrossRef
132.
go back to reference Choi IS, Estecio MR, Nagano Y et al (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 20:802–810PubMedCrossRef Choi IS, Estecio MR, Nagano Y et al (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 20:802–810PubMedCrossRef
133.
go back to reference Schulz WA, Elo JP, Florl AR et al (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65PubMedCrossRef Schulz WA, Elo JP, Florl AR et al (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65PubMedCrossRef
134.
go back to reference Shukeir N, Pakneshan P, Chen G et al (2006) Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 66:9202–9210PubMedCrossRef Shukeir N, Pakneshan P, Chen G et al (2006) Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 66:9202–9210PubMedCrossRef
135.
go back to reference Nakamura N, Takenaga K (1998) Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis 16:471–479PubMedCrossRef Nakamura N, Takenaga K (1998) Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis 16:471–479PubMedCrossRef
136.
go back to reference Rosty C, Ueki T, Argani P et al (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 160:45–50PubMed Rosty C, Ueki T, Argani P et al (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 160:45–50PubMed
137.
go back to reference Xie R, Loose DS, Shipley GL et al (2007) Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod Pathol 20:1045–1054PubMedCrossRef Xie R, Loose DS, Shipley GL et al (2007) Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod Pathol 20:1045–1054PubMedCrossRef
138.
go back to reference Lindsey JC, Lusher ME, Anderton JA et al (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 97:267–274PubMedCrossRef Lindsey JC, Lusher ME, Anderton JA et al (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 97:267–274PubMedCrossRef
139.
go back to reference Arisawa T, Tahara T, Shibata T et al (2007) Promoter hypomethylation of protease-activated receptor 2 associated with carcinogenesis in the stomach. J Gastroenterol Hepatol 22:943–948PubMedCrossRef Arisawa T, Tahara T, Shibata T et al (2007) Promoter hypomethylation of protease-activated receptor 2 associated with carcinogenesis in the stomach. J Gastroenterol Hepatol 22:943–948PubMedCrossRef
140.
go back to reference Honda T, Tamura G, Waki T et al (2004) Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer 90:838–843PubMedCrossRef Honda T, Tamura G, Waki T et al (2004) Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer 90:838–843PubMedCrossRef
141.
go back to reference Jung EJ, Kim MA, Lee HS et al (2005) Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res 25:2105–2111PubMed Jung EJ, Kim MA, Lee HS et al (2005) Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res 25:2105–2111PubMed
142.
go back to reference Gupta A, Godwin AK, Vanderveer L et al (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673PubMed Gupta A, Godwin AK, Vanderveer L et al (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673PubMed
143.
go back to reference Bariol C, Suter C, Cheong K et al (2003) The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 162:1361–1371PubMed Bariol C, Suter C, Cheong K et al (2003) The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 162:1361–1371PubMed
144.
go back to reference Sadikovic B, Andrews J, Carter D et al (2008) Genome-wide H3K9 histone acetylation profiles are altered in benzopyrene treated MCF7 breast cancer cells. J Biol Chem 283:4051–4060PubMedCrossRef Sadikovic B, Andrews J, Carter D et al (2008) Genome-wide H3K9 histone acetylation profiles are altered in benzopyrene treated MCF7 breast cancer cells. J Biol Chem 283:4051–4060PubMedCrossRef
145.
go back to reference Sigalotti L, Fratta E, Coral S et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 212:330–344PubMedCrossRef Sigalotti L, Fratta E, Coral S et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 212:330–344PubMedCrossRef
146.
go back to reference Oh BK, Kim H, Park HJ et al (2007) DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 20:65–73PubMed Oh BK, Kim H, Park HJ et al (2007) DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 20:65–73PubMed
147.
go back to reference Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol 32:443–451PubMedCrossRef Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol 32:443–451PubMedCrossRef
148.
go back to reference Cho CY, Wang JH, Chang HC et al (2007) Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. J Cell Physiol 213:65–69PubMedCrossRef Cho CY, Wang JH, Chang HC et al (2007) Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. J Cell Physiol 213:65–69PubMedCrossRef
149.
go back to reference Kassis ES, Zhao M, Hong JA et al (2006) Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 131:298–306PubMedCrossRef Kassis ES, Zhao M, Hong JA et al (2006) Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 131:298–306PubMedCrossRef
150.
go back to reference Winquist E, Knox J, Ayoub JP et al (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 24:159–167PubMedCrossRef Winquist E, Knox J, Ayoub JP et al (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 24:159–167PubMedCrossRef
151.
go back to reference Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18:1157–1164PubMed Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18:1157–1164PubMed
152.
go back to reference Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50PubMedCrossRef Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50PubMedCrossRef
153.
go back to reference Joseph J, Mudduluru G, Antony S et al (2004) Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 23:6304–6315PubMedCrossRef Joseph J, Mudduluru G, Antony S et al (2004) Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 23:6304–6315PubMedCrossRef
154.
go back to reference Lin KT, Yeh SH, Chen DS et al (2005) Epigenetic activation of alpha4, beta2 and beta6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. J Biomed Sci 12:803–813PubMedCrossRef Lin KT, Yeh SH, Chen DS et al (2005) Epigenetic activation of alpha4, beta2 and beta6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. J Biomed Sci 12:803–813PubMedCrossRef
Metadata
Title
Epigenetic contributions to cancer metastasis
Author
David I. Rodenhiser
Publication date
01-01-2009
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 1/2009
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-008-9166-2

Other articles of this Issue 1/2009

Clinical & Experimental Metastasis 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine