Skip to main content
Top
Published in: Cancer Causes & Control 4/2006

01-05-2006 | Special Section on Cancer and Rhythm

Chronotherapeutics: The Relevance of Timing in Cancer Therapy

Author: Francis Lévi

Published in: Cancer Causes & Control | Issue 4/2006

Login to get access

Abstract

Background

Cell physiology is regulated along the 24-h time scale by a circadian timing system composed of molecular clocks within each cell and a central coordination system in the brain. The mammalian molecular clock is made of interconnected molecular loops involving at least 12 circadian genes. The cellular clocks are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker which also helps the organism adjust to environmental cycles. The rest–activity rhythm is a reliable marker of the circadian system function in both rodents and man. This circadian organization is responsible for predictable changes in the tolerability and efficacy of anticancer agents, and possibly also in tumor promotion or growth.

Methods

Expected least toxic times of chemotherapy were extrapolated from experimental models to human subjects with reference to the rest–activity cycle. The clinical relevance of the chronotherapy principle, i.e. treatment administration as a function of rhythms, has been demonstrated in randomized multicenter trials.

Results

Chronotherapeutic schedules have been used to safely document the activity of the association of oxaliplatin, 5-FU and leucovorin against metastatic colorectal cancer and to set up a new medicosurgical management of this disease which achieved unprecedented long term survival.

Conclusion

The chronotherapy concept offers further promises for improving current cancer treatment options as well as for optimizing the development of new anticancer or supportive agents
Literature
1.
go back to reference Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661CrossRefPubMed Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661CrossRefPubMed
2.
go back to reference Vitaterna MH, King DP, Chang AM, etal. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725PubMed Vitaterna MH, King DP, Chang AM, etal. (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725PubMed
3.
go back to reference Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941CrossRefPubMed Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941CrossRefPubMed
4.
go back to reference Toh KL, Jones CR, He Y, etal. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291(5506):1040–3CrossRefPubMed Toh KL, Jones CR, He Y, etal. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291(5506):1040–3CrossRefPubMed
6.
go back to reference Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic Nucleus, the Mind’s Clock. Oxford University Press, Oxford, 467 pp Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic Nucleus, the Mind’s Clock. Oxford University Press, Oxford, 467 pp
7.
go back to reference Rosenwasser AM, Wirz-Justice A (1997) Circadian rhythms and depression: clinical and experimental models. In: Redfern P, Lemmer B (eds) Physiology and Pharmacology of Biological Rhythms. Springer-Verlag, Berlin, pp 457–485 Rosenwasser AM, Wirz-Justice A (1997) Circadian rhythms and depression: clinical and experimental models. In: Redfern P, Lemmer B (eds) Physiology and Pharmacology of Biological Rhythms. Springer-Verlag, Berlin, pp 457–485
8.
go back to reference Scheving LE, Burns ER, Pauly JE, Tsai TH (1978) Circadian variation in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat Rec 191:479–486CrossRefPubMed Scheving LE, Burns ER, Pauly JE, Tsai TH (1978) Circadian variation in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat Rec 191:479–486CrossRefPubMed
9.
go back to reference Bjarnason GA, Jordan R (1999) Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Pathol 154(2):613–622PubMed Bjarnason GA, Jordan R (1999) Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Pathol 154(2):613–622PubMed
10.
go back to reference Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern RB, Bjerknes R (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611PubMed Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern RB, Bjerknes R (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611PubMed
11.
go back to reference Granda TG, Lévi F (2002) Tumor-based rhythms of anticancer efficacy in experimental models. Chronobiol Int 19(1):21–41CrossRefPubMed Granda TG, Lévi F (2002) Tumor-based rhythms of anticancer efficacy in experimental models. Chronobiol Int 19(1):21–41CrossRefPubMed
12.
go back to reference Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50PubMed Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50PubMed
13.
go back to reference Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259CrossRefPubMed Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259CrossRefPubMed
14.
go back to reference Matsumura I, Tanaka H, Kanakura Y (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2:333–338PubMed Matsumura I, Tanaka H, Kanakura Y (2003) E2F1 and c-Myc in cell growth and death. Cell Cycle 2:333–338PubMed
15.
go back to reference Hofsethh LJ, Hussain SP, Harris CC (2004) P53/ 25 years after its discovery. Trends Pharmacol Sci 25:177–181 Hofsethh LJ, Hussain SP, Harris CC (2004) P53/ 25 years after its discovery. Trends Pharmacol Sci 25:177–181
16.
go back to reference Kellog DR (2003) Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 116:4883–4890 Kellog DR (2003) Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 116:4883–4890
17.
go back to reference Granda TG, Liu XH, Cermakian N, etal. (2005) Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumour. FASEB J 19(2):304–306PubMed Granda TG, Liu XH, Cermakian N, etal. (2005) Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumour. FASEB J 19(2):304–306PubMed
18.
go back to reference van der Horst GT, Muijtjens M, Kobayashi K, etal. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630PubMed van der Horst GT, Muijtjens M, Kobayashi K, etal. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630PubMed
19.
go back to reference Lévi F (1997) Chronopharmacology of anticancer agents. In: Redfern P, Lemmer B (eds) Physiology and Pharmacology of Biological Rhythms. Springer-Verlag, Berlin, pp. 299–331 Lévi F (1997) Chronopharmacology of anticancer agents. In: Redfern P, Lemmer B (eds) Physiology and Pharmacology of Biological Rhythms. Springer-Verlag, Berlin, pp. 299–331
20.
go back to reference Boughattas N, Levi F, Fournier C, etal. (1989) Circadian rhythm in toxicities and tissue uptake of 1,2-diamminocyclohexane (trans-1) oxalatoplatinum (II) in mice. Cancer Res 49:3362–3368PubMed Boughattas N, Levi F, Fournier C, etal. (1989) Circadian rhythm in toxicities and tissue uptake of 1,2-diamminocyclohexane (trans-1) oxalatoplatinum (II) in mice. Cancer Res 49:3362–3368PubMed
21.
go back to reference Boughattas N, Lévi F, Fournier C, etal. (1990) Stable circadian mechanisms of toxicity of two platinum analogs (cisplatin and carboplatin) despite repeated dosages in mice. J Pharmacol Exp Ther 255(2):672–679PubMed Boughattas N, Lévi F, Fournier C, etal. (1990) Stable circadian mechanisms of toxicity of two platinum analogs (cisplatin and carboplatin) despite repeated dosages in mice. J Pharmacol Exp Ther 255(2):672–679PubMed
22.
go back to reference Lévi F (2003) Circadian rhythms in 5-fluorouracil pharmacology and therapeutic applications. In: Rustum Y (ed) Fluoropyrimidines in Cancer Therapy. The Humana Press Inc, New Jersey, USA, pp 107–128 Lévi F (2003) Circadian rhythms in 5-fluorouracil pharmacology and therapeutic applications. In: Rustum Y (ed) Fluoropyrimidines in Cancer Therapy. The Humana Press Inc, New Jersey, USA, pp 107–128
23.
go back to reference Filipski E, Amat S, Lemaigre G, Vincenti M, Breillout F, Lévi F (1999) Relationship between circadian rhythm of vinorelbine toxicity and efficacy in P388-bearing mice. J Pharmacol Exp Ther 289:231–235PubMed Filipski E, Amat S, Lemaigre G, Vincenti M, Breillout F, Lévi F (1999) Relationship between circadian rhythm of vinorelbine toxicity and efficacy in P388-bearing mice. J Pharmacol Exp Ther 289:231–235PubMed
24.
go back to reference Granda TG, Filipski E, D’Attino RM, etal. (2001) Experimental chronotherapy of mouse mammary adenocarcinoma MA13/C with docetaxel and doxorubicin as single agents and in combination. Cancer Res 61:1996–2001PubMed Granda TG, Filipski E, D’Attino RM, etal. (2001) Experimental chronotherapy of mouse mammary adenocarcinoma MA13/C with docetaxel and doxorubicin as single agents and in combination. Cancer Res 61:1996–2001PubMed
25.
go back to reference Granda TG, D’Attino RM, Filipski E, etal. (2002) Circadian optimization of irinotecan and oxaliplatin efficacy in mice with Glasgow osteosarcoma. Br J Cancer 86(6):999–1005CrossRefPubMed Granda TG, D’Attino RM, Filipski E, etal. (2002) Circadian optimization of irinotecan and oxaliplatin efficacy in mice with Glasgow osteosarcoma. Br J Cancer 86(6):999–1005CrossRefPubMed
26.
go back to reference Focan C, Doalto L, Mazy V, etal. (1989) Vindesine en perfusion continue de 48 heures (suivie de cisplatine) dans le cancer pulmonaire avancé. Données chronopharmacocinétiques et efficacité clinique. Bull Cancer 76:909–912PubMed Focan C, Doalto L, Mazy V, etal. (1989) Vindesine en perfusion continue de 48 heures (suivie de cisplatine) dans le cancer pulmonaire avancé. Données chronopharmacocinétiques et efficacité clinique. Bull Cancer 76:909–912PubMed
27.
go back to reference Squalli A, Oustrin J, Houin G, etal. (1989) Clinical chronopharmacokinetics of doxorubicin (DXR). Ann Rev Chronopharmacol 5:393–396 Squalli A, Oustrin J, Houin G, etal. (1989) Clinical chronopharmacokinetics of doxorubicin (DXR). Ann Rev Chronopharmacol 5:393–396
28.
go back to reference Harris B, Song R, Soong S, Diasio RB (1990) Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels: evidence for circadian variation of plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 50:197–201PubMed Harris B, Song R, Soong S, Diasio RB (1990) Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels: evidence for circadian variation of plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 50:197–201PubMed
29.
go back to reference Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern RB, Bjerknes R (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611PubMed Smaaland R, Laerum OD, Lote K, Sletvold O, Sothern RB, Bjerknes R (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611PubMed
30.
go back to reference Buchi KN, Moore JG, Hrushesky WJM, Sothern RB, Rubin NH (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101:410–415PubMed Buchi KN, Moore JG, Hrushesky WJM, Sothern RB, Rubin NH (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101:410–415PubMed
31.
go back to reference Bjarnason GA, Jordan R (2000) Circadian variation of cell proliferation and cell protein expression in man : clinical implications. In: Meijer L, Jézéquel A, Ducommun B (eds) Progress in Cell Cycle Research. vol 4. Kluwer Academic, New York, pp 193–206 Bjarnason GA, Jordan R (2000) Circadian variation of cell proliferation and cell protein expression in man : clinical implications. In: Meijer L, Jézéquel A, Ducommun B (eds) Progress in Cell Cycle Research. vol 4. Kluwer Academic, New York, pp 193–206
32.
go back to reference Filipski E, King VM, Etienne MC, etal. (2004) Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am J Physiol Regul Integr Comp Physiol 287:R844-R851PubMed Filipski E, King VM, Etienne MC, etal. (2004) Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am J Physiol Regul Integr Comp Physiol 287:R844-R851PubMed
33.
go back to reference Focan C (1979) Sequential chemotherapy and circadian rhythm in human solid tumors. Cancer Chemother Pharmacol 3:197–202CrossRefPubMed Focan C (1979) Sequential chemotherapy and circadian rhythm in human solid tumors. Cancer Chemother Pharmacol 3:197–202CrossRefPubMed
34.
go back to reference Rivard G, Infante-Rivard C, Hoyoux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet 2(8467):1264–1266PubMed Rivard G, Infante-Rivard C, Hoyoux C, Champagne J (1985) Maintenance chemotherapy for childhood acute lymphoblastic leukemia: better in the evening. Lancet 2(8467):1264–1266PubMed
35.
go back to reference Schmiegelow K, Glomstein A, Kristinsson J, Salmi T, Schroder H, Bjork O (1997) Impact of morning versus evening schedule for oral methotrexate and 6-mercaptopurine on relapse risk for children with acute lymphoblastic leukemia Nordic Society for Pediatric Hematology and Oncology (NOPHO). J Pediatr Hematol Oncol 19(2):102–109CrossRefPubMed Schmiegelow K, Glomstein A, Kristinsson J, Salmi T, Schroder H, Bjork O (1997) Impact of morning versus evening schedule for oral methotrexate and 6-mercaptopurine on relapse risk for children with acute lymphoblastic leukemia Nordic Society for Pediatric Hematology and Oncology (NOPHO). J Pediatr Hematol Oncol 19(2):102–109CrossRefPubMed
36.
go back to reference Hrushesky W (1985) Circadian timing of cancer chemotherapy. Science 228:73–75PubMed Hrushesky W (1985) Circadian timing of cancer chemotherapy. Science 228:73–75PubMed
37.
go back to reference Lévi F, Benavides M, Chevelle C, etal. (1990) Chemotherapy of advanced ovarian cancer with 4’-0-tetrahydropyranyl adriamycin (THP) and cisplatin: a phase II trial with an evaluation of circadian timing and dose intensity. J Clin Oncol 8:705–714PubMed Lévi F, Benavides M, Chevelle C, etal. (1990) Chemotherapy of advanced ovarian cancer with 4’-0-tetrahydropyranyl adriamycin (THP) and cisplatin: a phase II trial with an evaluation of circadian timing and dose intensity. J Clin Oncol 8:705–714PubMed
38.
go back to reference Lévi F (2001) Circadian chronotherapy for human cancers. Lancet Oncol 2:307–315PubMed Lévi F (2001) Circadian chronotherapy for human cancers. Lancet Oncol 2:307–315PubMed
39.
go back to reference Mormont MC, Lévi F (2003) Cancer chronotherapy: principles, applications and perspectives. Cancer 97:155–169CrossRefPubMed Mormont MC, Lévi F (2003) Cancer chronotherapy: principles, applications and perspectives. Cancer 97:155–169CrossRefPubMed
40.
go back to reference Lévi F, Misset JL, Brienza S, etal. (1992) A chronopharmacologic Phase II clinical trial with 5-fluorouracil, folinic acid and oxaliplatin using an ambulatory multichannel programmable pump. High antitumor effectiveness against metastatic colorectal cancer. Cancer 69:893–900PubMed Lévi F, Misset JL, Brienza S, etal. (1992) A chronopharmacologic Phase II clinical trial with 5-fluorouracil, folinic acid and oxaliplatin using an ambulatory multichannel programmable pump. High antitumor effectiveness against metastatic colorectal cancer. Cancer 69:893–900PubMed
41.
go back to reference Lévi F, Zidani R, Vannetzel JM, etal. (1994) Chronomodulated versus fixed infusion rate delivery of ambulatory chemotherapy with oxaliplatin, 5-fluorouracil and folinic acid in patients with colorectal cancer metastases. A randomized multiinstitutional trial. J Natl Cancer Inst 86:1608–1617PubMed Lévi F, Zidani R, Vannetzel JM, etal. (1994) Chronomodulated versus fixed infusion rate delivery of ambulatory chemotherapy with oxaliplatin, 5-fluorouracil and folinic acid in patients with colorectal cancer metastases. A randomized multiinstitutional trial. J Natl Cancer Inst 86:1608–1617PubMed
42.
go back to reference Lévi F, Zidani R, Misset JL for the International Organization for Cancer Chronotherapy (1997) Randomized multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. Lancet 350:681–686 Lévi F, Zidani R, Misset JL for the International Organization for Cancer Chronotherapy (1997) Randomized multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. Lancet 350:681–686
43.
go back to reference Lévi F, Zidani R, Brienza S, etal. (1999) A multicenter evaluation of intensified, ambulatory chronomodulated chemotherapy with oxaliplatin, 5-fluorouracil and leucovorin as initial treatment of patients with metastatic colorectal carcinoma. Cancer 85:2532–2540CrossRefPubMed Lévi F, Zidani R, Brienza S, etal. (1999) A multicenter evaluation of intensified, ambulatory chronomodulated chemotherapy with oxaliplatin, 5-fluorouracil and leucovorin as initial treatment of patients with metastatic colorectal carcinoma. Cancer 85:2532–2540CrossRefPubMed
44.
go back to reference Giacchetti S, Bjarnason G, Garufi C, etal. (2004) First line infusion of 5-fluorouracil, leucovorin and oxaliplatin for metastatic colorectal cancer:4-day chronomodulated (FFL4–10) versus 2-day FOLFOX2. A multicenter randomized Phase III trial of the Chronotherapy Group of the European Organization for Research and Treatment of Cancer (EORTC 05963). Proc Am Soc Clin Oncol 23:731 Giacchetti S, Bjarnason G, Garufi C, etal. (2004) First line infusion of 5-fluorouracil, leucovorin and oxaliplatin for metastatic colorectal cancer:4-day chronomodulated (FFL4–10) versus 2-day FOLFOX2. A multicenter randomized Phase III trial of the Chronotherapy Group of the European Organization for Research and Treatment of Cancer (EORTC 05963). Proc Am Soc Clin Oncol 23:731
45.
go back to reference Giacchetti S, Itzhaki M, Gruia G, etal. (1999) Long term survival of patients with unresectable colorectal cancer liver metastases following infusional chemotherapy with 5-fluorouracil, leucovorin, oxaliplatin and surgery. Ann Oncol 10:663–669CrossRefPubMed Giacchetti S, Itzhaki M, Gruia G, etal. (1999) Long term survival of patients with unresectable colorectal cancer liver metastases following infusional chemotherapy with 5-fluorouracil, leucovorin, oxaliplatin and surgery. Ann Oncol 10:663–669CrossRefPubMed
46.
go back to reference Adam R, Delvart V, Pascal G, etal. (2004) Rescue surgery for non-resectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240(4):644–658PubMed Adam R, Delvart V, Pascal G, etal. (2004) Rescue surgery for non-resectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240(4):644–658PubMed
47.
go back to reference Mormont MC, Lévi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70:241–247CrossRefPubMed Mormont MC, Lévi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70:241–247CrossRefPubMed
48.
go back to reference Smaaland R, Abrahamsen JF, Svardal AM, Lote K, Ueland PM (1992) DNA cell cycle distribution and glutathione (GSH) content according to circadian stage in bone marrow of cancer patients. Br J Cancer 66:39–45PubMed Smaaland R, Abrahamsen JF, Svardal AM, Lote K, Ueland PM (1992) DNA cell cycle distribution and glutathione (GSH) content according to circadian stage in bone marrow of cancer patients. Br J Cancer 66:39–45PubMed
49.
go back to reference Touitou Y, Bogdan A, Lévi F, Benavides M, Auzéby A (1996) Disruption of the circadian patterns of serum cortisol in breast and ovarian cancer patients. Relationships with tumor marker antigens. Br J Cancer 74:1248–1252PubMed Touitou Y, Bogdan A, Lévi F, Benavides M, Auzéby A (1996) Disruption of the circadian patterns of serum cortisol in breast and ovarian cancer patients. Relationships with tumor marker antigens. Br J Cancer 74:1248–1252PubMed
50.
go back to reference Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000CrossRefPubMed Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000CrossRefPubMed
51.
go back to reference Mormont MC, Bleuzen P, Waterhouse J, etal. (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045PubMed Mormont MC, Bleuzen P, Waterhouse J, etal. (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045PubMed
52.
go back to reference Mormont MC, Waterhouse J (2002) Contribution of the rest-activity circadian rhythm to quality of life in cancer patients. Chronobiol Int 19(1):313–323PubMed Mormont MC, Waterhouse J (2002) Contribution of the rest-activity circadian rhythm to quality of life in cancer patients. Chronobiol Int 19(1):313–323PubMed
53.
go back to reference Garufi C, Bjarnason G, Giacchetti S, etal. on behalf of the EORTC Chronotherapy Group (2005) Independent prognostic value of the rest/activity circadian rhythm on overall survival (OS) in patients (pts) with metastatic colorectal cancer (MCC) receiving first line chemotherapy with 5-fluorouracil, leucovorin and oxaliplatin: a companion study to EORTC 05963. Proc Am Soc Clin Oncol, 124:abstr 3553 Garufi C, Bjarnason G, Giacchetti S, etal. on behalf of the EORTC Chronotherapy Group (2005) Independent prognostic value of the rest/activity circadian rhythm on overall survival (OS) in patients (pts) with metastatic colorectal cancer (MCC) receiving first line chemotherapy with 5-fluorouracil, leucovorin and oxaliplatin: a companion study to EORTC 05963. Proc Am Soc Clin Oncol, 124:abstr 3553
54.
go back to reference Innominato PF, Focan C, Bjarnason GA, etal. on behalf of the EORTC Chronotherapy Group (2005) Quality of life (QoL) correlates with the rest/activity circadian rhythm (RAR) in patients (pts) with metastatic colorectal cancer (MCC) on first line chemotherapy with 5-fluorouracil, leucovorin and oxaliplatin: an international multicenter study (EORTC 05963). Proc Am Soc Clin Oncol 24:abstr 8029 Innominato PF, Focan C, Bjarnason GA, etal. on behalf of the EORTC Chronotherapy Group (2005) Quality of life (QoL) correlates with the rest/activity circadian rhythm (RAR) in patients (pts) with metastatic colorectal cancer (MCC) on first line chemotherapy with 5-fluorouracil, leucovorin and oxaliplatin: an international multicenter study (EORTC 05963). Proc Am Soc Clin Oncol 24:abstr 8029
55.
go back to reference Filipski E, King VM, Li XM, etal. (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697PubMed Filipski E, King VM, Li XM, etal. (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697PubMed
56.
go back to reference Filipski E, Delaunay F, King VM, etal. (2004) Effects of chronic jet lag on malignant growth in mice. Cancer Res 64(21):7879–7885CrossRefPubMed Filipski E, Delaunay F, King VM, etal. (2004) Effects of chronic jet lag on malignant growth in mice. Cancer Res 64(21):7879–7885CrossRefPubMed
57.
go back to reference Filipski E, Innominato PF, Wu MW, etal. (2005) Effects of light and food schedules on liver and tumor molecular clocks. J Natl Cancer Inst 97:507–517PubMed Filipski E, Innominato PF, Wu MW, etal. (2005) Effects of light and food schedules on liver and tumor molecular clocks. J Natl Cancer Inst 97:507–517PubMed
58.
go back to reference Kramer A, Yang FC, Snodgrass P, etal. (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515CrossRefPubMed Kramer A, Yang FC, Snodgrass P, etal. (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515CrossRefPubMed
59.
go back to reference Rich T, Innominato PF, Boerner MC, etal. (2005) Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24 hour rest–activity patterns in patients with metastatic colorectal cancer. Clin Cancer Res 11:1757–1764PubMed Rich T, Innominato PF, Boerner MC, etal. (2005) Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24 hour rest–activity patterns in patients with metastatic colorectal cancer. Clin Cancer Res 11:1757–1764PubMed
60.
go back to reference Klevecz R, Shymko R, Braly P (1987) Circadian gating of S phase in human ovarian cancer. Cancer Res 47:6267–6271PubMed Klevecz R, Shymko R, Braly P (1987) Circadian gating of S phase in human ovarian cancer. Cancer Res 47:6267–6271PubMed
61.
go back to reference Smaaland R, Lote K, Sothern RB, etal. (1993) DNA synthesis and ploidy in non-Hodgkin’s lymphomas demonstrate variation depending on circadian stage of cell sampling. Cancer Res 53:3129–3138PubMed Smaaland R, Lote K, Sothern RB, etal. (1993) DNA synthesis and ploidy in non-Hodgkin’s lymphomas demonstrate variation depending on circadian stage of cell sampling. Cancer Res 53:3129–3138PubMed
62.
go back to reference Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705PubMed Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705PubMed
Metadata
Title
Chronotherapeutics: The Relevance of Timing in Cancer Therapy
Author
Francis Lévi
Publication date
01-05-2006
Publisher
Kluwer Academic Publishers
Published in
Cancer Causes & Control / Issue 4/2006
Print ISSN: 0957-5243
Electronic ISSN: 1573-7225
DOI
https://doi.org/10.1007/s10552-005-9004-7

Other articles of this Issue 4/2006

Cancer Causes & Control 4/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine