Skip to main content
Top
Published in: Brain Topography 4/2017

01-07-2017 | Original Paper

Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans

Authors: Nigel Gebodh, M. Isabel Vanegas, Simon P. Kelly

Published in: Brain Topography | Issue 4/2017

Login to get access

Abstract

Decades of intracranial electrophysiological investigation into the primary visual cortex (V1) have produced many fundamental insights into the computations carried out in low-level visual circuits of the brain. Some of the most important work has been simply concerned with the precise measurement of neural response variations as a function of elementary stimulus attributes such as contrast and size. Surprisingly, such simple but fundamental characterization of V1 responses has not been carried out in human electrophysiology. Here we report such a detailed characterization for the initial “C1” component of the scalp-recorded visual evoked potential (VEP). The C1 is known to be dominantly generated by initial afferent activation in V1, but is difficult to record reliably due to interindividual anatomical variability. We used pattern-pulse multifocal VEP mapping to identify a stimulus position that activates the left lower calcarine bank in each individual, and afterwards measured robust negative C1s over posterior midline scalp to gratings presented sequentially at that location. We found clear and systematic increases in C1 peak amplitude and decreases in peak latency with increasing size as well as with increasing contrast. With a sample of 15 subjects and ~180 trials per condition, reliable C1 amplitudes of −0.46 µV were evoked at as low a contrast as 3.13% and as large as −4.82 µV at 100% contrast, using stimuli of 3.33° diameter. A practical implication is that by placing sufficiently-sized stimuli to target favorable calcarine cortical loci, robust V1 responses can be measured at contrasts close to perceptual thresholds, which could greatly facilitate principled studies of early visual perception and attention.
Literature
go back to reference Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMed Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMed
go back to reference Albrecht DG, Geisler WS, Frazor RA, Crane AM (2002) Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol 88:888–913PubMed Albrecht DG, Geisler WS, Frazor RA, Crane AM (2002) Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol 88:888–913PubMed
go back to reference Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84CrossRefPubMed Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84CrossRefPubMed
go back to reference Bao M, Yang L, Rios C, He B, Engel SA (2010) Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci 30:15080–15084CrossRefPubMedPubMedCentral Bao M, Yang L, Rios C, He B, Engel SA (2010) Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci 30:15080–15084CrossRefPubMedPubMedCentral
go back to reference Baseler H, Sutter E, Klein S, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90:65–81CrossRefPubMed Baseler H, Sutter E, Klein S, Carney T (1994) The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 90:65–81CrossRefPubMed
go back to reference Buracas GT, Boynton GM (2002) Efficient design of event-related fMRI experiments using M-sequences. Neuroimage 16:801–813CrossRefPubMed Buracas GT, Boynton GM (2002) Efficient design of event-related fMRI experiments using M-sequences. Neuroimage 16:801–813CrossRefPubMed
go back to reference Clark VP, Hillyard SA (1996) Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci 8:387–402CrossRefPubMed Clark VP, Hillyard SA (1996) Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci 8:387–402CrossRefPubMed
go back to reference Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp 2:170–187CrossRef Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp 2:170–187CrossRef
go back to reference DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat’s primary visual cortex. J Neurophysiol 71:347–374PubMed DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat’s primary visual cortex. J Neurophysiol 71:347–374PubMed
go back to reference Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111CrossRefPubMed Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111CrossRefPubMed
go back to reference Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 21:11–21CrossRefPubMed Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 21:11–21CrossRefPubMed
go back to reference Fu S, Huang Y, Luo Y, Wang Y, Fedota J, Greenwood PM, Parasuraman R (2009) Perceptual load interacts with involuntary attention at early processing stages: event-related potential studies. Neuroimage 48:191–199CrossRefPubMedPubMedCentral Fu S, Huang Y, Luo Y, Wang Y, Fedota J, Greenwood PM, Parasuraman R (2009) Perceptual load interacts with involuntary attention at early processing stages: event-related potential studies. Neuroimage 48:191–199CrossRefPubMedPubMedCentral
go back to reference Gawne TJ, Kjaer TW, Richmond BJ (1996) Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76:1356–1360PubMed Gawne TJ, Kjaer TW, Richmond BJ (1996) Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76:1356–1360PubMed
go back to reference Itthipuripat S, Ester EF, Deering S, Serences JT (2014) Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior. J Neurosci 34:13384–13398CrossRefPubMedPubMedCentral Itthipuripat S, Ester EF, Deering S, Serences JT (2014) Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior. J Neurosci 34:13384–13398CrossRefPubMedPubMedCentral
go back to reference James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44:879–890CrossRefPubMed James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44:879–890CrossRefPubMed
go back to reference Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21PubMed Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21PubMed
go back to reference Jones R, Keck MJ (1978) Visual evoked response as a function of grating spatial frequency. Invest Ophthalmol Vis Sci 17:652–659PubMed Jones R, Keck MJ (1978) Visual evoked response as a function of grating spatial frequency. Invest Ophthalmol Vis Sci 17:652–659PubMed
go back to reference Kelly SP, Vanegas IM, Schroeder CE, Lalor EC (2013b) The cruciform model of striate generation of the early VEP re-illustrated not revoked: a reply to Ales et al. (2013). Neuroimage 82:154–159CrossRefPubMedPubMedCentral Kelly SP, Vanegas IM, Schroeder CE, Lalor EC (2013b) The cruciform model of striate generation of the early VEP re-illustrated not revoked: a reply to Ales et al. (2013). Neuroimage 82:154–159CrossRefPubMedPubMedCentral
go back to reference Mihaylova M, Stomonyakov V, Vassilev A (1999) Peripheral and central delay in processing high spatial frequencies: reaction time and VEP latency studies. Vision Res 39:699–705CrossRefPubMed Mihaylova M, Stomonyakov V, Vassilev A (1999) Peripheral and central delay in processing high spatial frequencies: reaction time and VEP latency studies. Vision Res 39:699–705CrossRefPubMed
go back to reference Ohtani Y, Okamura S, Yoshida Y, Toyama K, Ejima Y (2002) Surround suppression in the human visual cortex: an analysis using magnetoencephalography. Vision Res 42:1825–1835CrossRefPubMed Ohtani Y, Okamura S, Yoshida Y, Toyama K, Ejima Y (2002) Surround suppression in the human visual cortex: an analysis using magnetoencephalography. Vision Res 42:1825–1835CrossRefPubMed
go back to reference Parker DM, Salzen EA, Lishman JR (1982) Visual-evoked responses elicited by the onset and offset of sinusoidal gratings: latency, waveform, and topographic characteristics. Invest Ophthalmol Vis Sci 22:675–680PubMed Parker DM, Salzen EA, Lishman JR (1982) Visual-evoked responses elicited by the onset and offset of sinusoidal gratings: latency, waveform, and topographic characteristics. Invest Ophthalmol Vis Sci 22:675–680PubMed
go back to reference Pourtois G, Rauss KS, Vuilleumier P, Schwartz S (2008) Effects of perceptual learning on primary visual cortex activity in humans. Vision Res 48:55–62CrossRefPubMed Pourtois G, Rauss KS, Vuilleumier P, Schwartz S (2008) Effects of perceptual learning on primary visual cortex activity in humans. Vision Res 48:55–62CrossRefPubMed
go back to reference Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329CrossRefPubMed Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329CrossRefPubMed
go back to reference Rauss K, Schwartz S, Pourtois G (2011) Top-down effects on early visual processing in humans: a predictive coding framework. Neurosci Biobehav Rev 35:1237–1253CrossRefPubMed Rauss K, Schwartz S, Pourtois G (2011) Top-down effects on early visual processing in humans: a predictive coding framework. Neurosci Biobehav Rev 35:1237–1253CrossRefPubMed
go back to reference Rebai M, Bernard C, Lannou J, Jouen F (1998) Spatial frequency and right hemisphere: an electrophysiological investigation. Brain Cogn 36:21–29CrossRefPubMed Rebai M, Bernard C, Lannou J, Jouen F (1998) Spatial frequency and right hemisphere: an electrophysiological investigation. Brain Cogn 36:21–29CrossRefPubMed
go back to reference Reich DS, Mechler F, Victor JD (2001) Temporal coding of contrast in primary visual cortex: when, what, and why. J Neurophysiol 85:1039–1050PubMed Reich DS, Mechler F, Victor JD (2001) Temporal coding of contrast in primary visual cortex: when, what, and why. J Neurophysiol 85:1039–1050PubMed
go back to reference Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85:1873–1887PubMed Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85:1873–1887PubMed
go back to reference Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30:1–10CrossRefPubMed Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30:1–10CrossRefPubMed
go back to reference Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755CrossRefPubMed Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755CrossRefPubMed
go back to reference Vanegas MI, Blangero A, Kelly SP (2013) Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials. J Neural Eng 10:036003CrossRefPubMedPubMedCentral Vanegas MI, Blangero A, Kelly SP (2013) Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials. J Neural Eng 10:036003CrossRefPubMedPubMedCentral
go back to reference Vanegas MI, Blangero A, Kelly SP (2015) Electrophysiological indices of surround suppression in humans. J Neurophysiol 113:1100–1109CrossRefPubMed Vanegas MI, Blangero A, Kelly SP (2015) Electrophysiological indices of surround suppression in humans. J Neurophysiol 113:1100–1109CrossRefPubMed
go back to reference Vassilev A, Manahilov V, Mitov D (1983) Spatial frequency and the pattern onset-offset response. Vision Res 23:1417–1422CrossRefPubMed Vassilev A, Manahilov V, Mitov D (1983) Spatial frequency and the pattern onset-offset response. Vision Res 23:1417–1422CrossRefPubMed
go back to reference Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vision Res 42:851–864CrossRefPubMed Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vision Res 42:851–864CrossRefPubMed
go back to reference Zhang X, Zhaoping L, Zhou T, Fang F (2012) Neural activities in V1 create a bottom-up saliency map. Neuron 73:183–192CrossRefPubMed Zhang X, Zhaoping L, Zhou T, Fang F (2012) Neural activities in V1 create a bottom-up saliency map. Neuron 73:183–192CrossRefPubMed
Metadata
Title
Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans
Authors
Nigel Gebodh
M. Isabel Vanegas
Simon P. Kelly
Publication date
01-07-2017
Publisher
Springer US
Published in
Brain Topography / Issue 4/2017
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0530-2

Other articles of this Issue 4/2017

Brain Topography 4/2017 Go to the issue