Skip to main content
Top
Published in: Brain Topography 4/2016

01-07-2016 | Original Paper

Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients

Authors: Nicola Montemurro, Guillaume Herbet, Hugues Duffau

Published in: Brain Topography | Issue 4/2016

Login to get access

Abstract

To investigate the neural network underpinning eye movements, a cortical and subcortical intraoperative mapping using direct electrical stimulation (DES) was achieved in six awake patients during surgery for a right frontal low-grade glioma. We assessed the relationship between the occurrence of ocular deviation during both cortical and axonal DES and the anatomic location for each response. The corresponding stimulation sites were reported on a standard brain template for visual analysis and between-subjects comparisons. Our results showed that DES of the cortical frontal eye field (FEF) elicited horizontal (anterior FEF) or upward (posterior FEF) eye movements in 3 patients, supporting the fact that FEF comprises several distinct functional subregions. In addition, subcortical stimulation of the white matter tracts underneath the FEF evoked conjugate contraversive ocular deviation in 3 other patients. Interestingly, this region seems to be a crossroad between the fronto-striatal tract, the frontal aslant tract, the inferior fronto-occipital fascicle and the superior longitudinal fascicle. No deficits in eye movements were observed following surgery. To our knowledge, this is the first study reporting ocular deviation during axonal electrostimulation mapping of the white matter fibers in awake patients. Therefore, our original data issued from DES give new insights into the cortical and subcortical structures involved in the control of eye movements and their strong relationships with other functional pathways.
Literature
go back to reference Blanke O, Seeck M (2003) Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Exp Brain Res 150:174–183PubMed Blanke O, Seeck M (2003) Direction of saccadic and smooth eye movements induced by electrical stimulation of the human frontal eye field: effect of orbital position. Exp Brain Res 150:174–183PubMed
go back to reference Blanke O, Spinelli L, Thut G, Michel CM, Perrig S, Landis T, Seeck M (2000) Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics. NeuroReport 11:1907–1913CrossRefPubMed Blanke O, Spinelli L, Thut G, Michel CM, Perrig S, Landis T, Seeck M (2000) Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics. NeuroReport 11:1907–1913CrossRefPubMed
go back to reference Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500CrossRefPubMed Brett M, Leff AP, Rorden C, Ashburner J (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500CrossRefPubMed
go back to reference Charras P, Herbet G, Deverdun J, de Champfleur NM, Duffau H, Bartolomeo P, Bonnetblanc F (2015) Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 63:27–41CrossRefPubMed Charras P, Herbet G, Deverdun J, de Champfleur NM, Duffau H, Bartolomeo P, Bonnetblanc F (2015) Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 63:27–41CrossRefPubMed
go back to reference de Benedictis A, Sarubbo S, Duffau H (2012) Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg 117:1053–1069CrossRefPubMed de Benedictis A, Sarubbo S, Duffau H (2012) Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation. J Neurosurg 117:1053–1069CrossRefPubMed
go back to reference de Weijer AD, Mandl RC, Sommer IE, Vink M, Kahn RS, Neggers SF (2010) Human fronto-tectal and fronto-striatal-tectal pathways activate differently during anti-saccades. Front Hum Neurosci 4:41PubMedPubMedCentral de Weijer AD, Mandl RC, Sommer IE, Vink M, Kahn RS, Neggers SF (2010) Human fronto-tectal and fronto-striatal-tectal pathways activate differently during anti-saccades. Front Hum Neurosci 4:41PubMedPubMedCentral
go back to reference Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4:476–486CrossRefPubMed Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4:476–486CrossRefPubMed
go back to reference Duffau H (2009) Surgery of low-grade gliomas: towards a “functional neurooncology”. Curr Opin Oncol 21:543–549CrossRefPubMed Duffau H (2009) Surgery of low-grade gliomas: towards a “functional neurooncology”. Curr Opin Oncol 21:543–549CrossRefPubMed
go back to reference Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569–574CrossRef Duffau H (2012) The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien) 154:569–574CrossRef
go back to reference Duffau H (2014) The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 258:325–337CrossRef Duffau H (2014) The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery. Cortex 258:325–337CrossRef
go back to reference Duffau H (2015) Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11:255–265CrossRefPubMed Duffau H (2015) Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol 11:255–265CrossRefPubMed
go back to reference Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471CrossRefPubMed Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471CrossRefPubMed
go back to reference Esterman M, Liu G, Okabe H, Reagan A, Thai M, DeGutis J (2015) Frontal eye field involvement in sustaining visual attention: evidence from transcranial magnetic stimulation. Neuroimage 111:542–548CrossRefPubMed Esterman M, Liu G, Okabe H, Reagan A, Thai M, DeGutis J (2015) Frontal eye field involvement in sustaining visual attention: evidence from transcranial magnetic stimulation. Neuroimage 111:542–548CrossRefPubMed
go back to reference Ferrier D (1875) Experiments on the brains of monkeys. Proc R Soc Lond 23:409–430CrossRef Ferrier D (1875) Experiments on the brains of monkeys. Proc R Soc Lond 23:409–430CrossRef
go back to reference Förster O (1936) Motorische Felder und Bahnen. In: Bumke O, Förster O (eds) Handbuch der Neurologie. Springer, Berlin Heidelberg New York, pp 46–141 Förster O (1936) Motorische Felder und Bahnen. In: Bumke O, Förster O (eds) Handbuch der Neurologie. Springer, Berlin Heidelberg New York, pp 46–141
go back to reference Godoy J, Lueders H, Dinner DS, Morris HH, Wyllie E (1990) Versive eye movements elicited by electrical cortical stimulation of the human brain. Neurology 40:296–299CrossRefPubMed Godoy J, Lueders H, Dinner DS, Morris HH, Wyllie E (1990) Versive eye movements elicited by electrical cortical stimulation of the human brain. Neurology 40:296–299CrossRefPubMed
go back to reference Herbet G, Lafargue G, Moritz-Gasser S, Bonnetblanc F, Duffau H (2015) Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences. Brain Struct Funct 220:2159–2169CrossRefPubMed Herbet G, Lafargue G, Moritz-Gasser S, Bonnetblanc F, Duffau H (2015) Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences. Brain Struct Funct 220:2159–2169CrossRefPubMed
go back to reference Howard D, Patterson KE (1992) The pyramids and palm trees test. Thames Valley Test Co. Thames Valley Test Company, Bury St Edmunds Howard D, Patterson KE (1992) The pyramids and palm trees test. Thames Valley Test Co. Thames Valley Test Company, Bury St Edmunds
go back to reference Kaiboriboon K, Lüders HO, Miller JP, Leigh RJ (2012) Upward gaze and head deviation with frontal eye field stimulation. Epileptic Disord 14:64–68PubMed Kaiboriboon K, Lüders HO, Miller JP, Leigh RJ (2012) Upward gaze and head deviation with frontal eye field stimulation. Epileptic Disord 14:64–68PubMed
go back to reference Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2014) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220:3399–3412CrossRefPubMed Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2014) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220:3399–3412CrossRefPubMed
go back to reference Leigh RJ, Foley JM, Remler BF, Civil RH (1987) Oculogyric crisis: a syndrome of thought disorder and ocular deviation. Ann Neurol 22:13–17CrossRefPubMed Leigh RJ, Foley JM, Remler BF, Civil RH (1987) Oculogyric crisis: a syndrome of thought disorder and ocular deviation. Ann Neurol 22:13–17CrossRefPubMed
go back to reference Lobel E, Kahane P, Leonards U, Grosbras M, Lehericy S, Le Bihan D, Berthoz A (2001) Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. J Neurosurg 95:804–815CrossRefPubMed Lobel E, Kahane P, Leonards U, Grosbras M, Lehericy S, Le Bihan D, Berthoz A (2001) Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation. J Neurosurg 95:804–815CrossRefPubMed
go back to reference Lynch JC, Tian JR (2006) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501CrossRefPubMed Lynch JC, Tian JR (2006) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501CrossRefPubMed
go back to reference McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68:255–270CrossRefPubMedPubMedCentral McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68:255–270CrossRefPubMedPubMedCentral
go back to reference McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763CrossRefPubMed McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763CrossRefPubMed
go back to reference Milea D, Lobel E, Lehéricy S, Duffau H, Rivaud-Péchoux S, Berthoz A, Pierrot-Deseilligny C (2002) Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression. NeuroReport 13:1359–1364CrossRefPubMed Milea D, Lobel E, Lehéricy S, Duffau H, Rivaud-Péchoux S, Berthoz A, Pierrot-Deseilligny C (2002) Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression. NeuroReport 13:1359–1364CrossRefPubMed
go back to reference Milea D, Lehéricy S, Rivaud-Péchoux S, Duffau H, Lobel E, Capelle L, Marsault C, Berthoz A, Pierrot-Deseilligny C (2003) Antisaccade deficit after anterior cingulate cortex resection. NeuroReport 14:283–287CrossRefPubMed Milea D, Lehéricy S, Rivaud-Péchoux S, Duffau H, Lobel E, Capelle L, Marsault C, Berthoz A, Pierrot-Deseilligny C (2003) Antisaccade deficit after anterior cingulate cortex resection. NeuroReport 14:283–287CrossRefPubMed
go back to reference Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia 51:1814–1822CrossRefPubMed Moritz-Gasser S, Herbet G, Duffau H (2013) Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study. Neuropsychologia 51:1814–1822CrossRefPubMed
go back to reference Neggers SF, Zandbelt BB, Schall MS, Schall JD (2015) Comparative diffusion tractography of corticostriatal motor pathways reveals differences between humans and macaques. J Neurophysiol 113:2164–2172CrossRefPubMedPubMedCentral Neggers SF, Zandbelt BB, Schall MS, Schall JD (2015) Comparative diffusion tractography of corticostriatal motor pathways reveals differences between humans and macaques. J Neurophysiol 113:2164–2172CrossRefPubMedPubMedCentral
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
go back to reference Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef
go back to reference Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471PubMed Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82:463–471PubMed
go back to reference Pierrot-Deseilligny C, Rivaud S, Gaymard B, Müri R, Vermersch AI (1995) Cortical control of saccades. Ann Neurol 37:557–567CrossRefPubMed Pierrot-Deseilligny C, Rivaud S, Gaymard B, Müri R, Vermersch AI (1995) Cortical control of saccades. Ann Neurol 37:557–567CrossRefPubMed
go back to reference Pierrot-Deseilligny C, Ploner CJ, Muri RM, Gaymard B, Rivaud-Pechoux S (2002) Effects of cortical lesions on saccadic: eye movements in humans. Ann N Y Acad Sci 956:216–229CrossRefPubMed Pierrot-Deseilligny C, Ploner CJ, Muri RM, Gaymard B, Rivaud-Pechoux S (2002) Effects of cortical lesions on saccadic: eye movements in humans. Ann N Y Acad Sci 956:216–229CrossRefPubMed
go back to reference Premereur E, Vanduffel W, Roelfsema PR, Janssen P (2012) Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area. J Neurophysiol 108:1392–1402CrossRefPubMedPubMedCentral Premereur E, Vanduffel W, Roelfsema PR, Janssen P (2012) Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area. J Neurophysiol 108:1392–1402CrossRefPubMedPubMedCentral
go back to reference Rasmussen T, Penfield W (1948) Movement of the head and eyes from stimulation of human frontal cortex. Res Publ Assoc Res Nerv Mental Dis 23:346–361 Rasmussen T, Penfield W (1948) Movement of the head and eyes from stimulation of human frontal cortex. Res Publ Assoc Res Nerv Mental Dis 23:346–361
go back to reference Rech F, Herbet G, Moritz-Gasser S, Duffau H (2014) Disruption of bimanual movement by unilateral subcortical stimulation. Hum Brain Mapp 35:3439–3445CrossRefPubMed Rech F, Herbet G, Moritz-Gasser S, Duffau H (2014) Disruption of bimanual movement by unilateral subcortical stimulation. Hum Brain Mapp 35:3439–3445CrossRefPubMed
go back to reference Rech F, Herbet G, Moritz-Gasser S, Duffau H (2015) Somatotopic organization of the white matter tracts underpinning motor control in humans: an electrical stimulation study. Brain Struct Funct Oct 12. [Epub ahead of print] Rech F, Herbet G, Moritz-Gasser S, Duffau H (2015) Somatotopic organization of the white matter tracts underpinning motor control in humans: an electrical stimulation study. Brain Struct Funct Oct 12. [Epub ahead of print]
go back to reference Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37CrossRefPubMed Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H (2013) Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218:21–37CrossRefPubMed
go back to reference Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H (2012) Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp 34:3023–3030CrossRefPubMed Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H (2012) Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp 34:3023–3030CrossRefPubMed
go back to reference Tehovnik EJ, Slocum WM (2000) Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys. Brain Res 877:101–106CrossRefPubMed Tehovnik EJ, Slocum WM (2000) Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys. Brain Res 877:101–106CrossRefPubMed
go back to reference Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Levy R, Dubois B, Bartolomeo P (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309:2226–2228CrossRefPubMed Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Levy R, Dubois B, Bartolomeo P (2005) Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science 309:2226–2228CrossRefPubMed
go back to reference Thurtell MJ, Mohamed A, Lüders HO, Leigh RJ (2009) Evidence for three-dimensional cortical control of gaze from epileptic patients. J Neurol Neurosurg Psychiatry 80:683–685CrossRefPubMed Thurtell MJ, Mohamed A, Lüders HO, Leigh RJ (2009) Evidence for three-dimensional cortical control of gaze from epileptic patients. J Neurol Neurosurg Psychiatry 80:683–685CrossRefPubMed
go back to reference van Geemen K, Herbet G, Moritz-Gasser S, Duffau H (2014) Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence From intraoperative awake mapping in glioma patients. Hum Brain Mapp 35:1587–1596CrossRefPubMed van Geemen K, Herbet G, Moritz-Gasser S, Duffau H (2014) Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence From intraoperative awake mapping in glioma patients. Hum Brain Mapp 35:1587–1596CrossRefPubMed
go back to reference Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A (2014) Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 8:66PubMedPubMedCentral Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A (2014) Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 8:66PubMedPubMedCentral
Metadata
Title
Right Cortical and Axonal Structures Eliciting Ocular Deviation During Electrical Stimulation Mapping in Awake Patients
Authors
Nicola Montemurro
Guillaume Herbet
Hugues Duffau
Publication date
01-07-2016
Publisher
Springer US
Published in
Brain Topography / Issue 4/2016
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0490-6

Other articles of this Issue 4/2016

Brain Topography 4/2016 Go to the issue