Skip to main content
Top
Published in: Brain Topography 4/2016

01-07-2016 | Original Paper

Applying Transcranial Magnetic Stimulation (TMS) Over the Dorsal Visual Pathway Induces Schizophrenia-like Disruption of Perceptual Closure

Authors: Revital Amiaz, Dana Vainiger, Ari A. Gershon, Mark Weiser, Michal Lavidor, Daniel C. Javitt

Published in: Brain Topography | Issue 4/2016

Login to get access

Abstract

Perceptual closure ability is postulated to depend upon rapid transmission of magnocellular information to prefrontal cortex via the dorsal stream. In contrast, illusory contour processing requires only local interactions within primary and ventral stream visual regions, such as lateral occipital complex. Schizophrenia is associated with deficits in perceptual closure versus illusory contours processing that is hypothesized to reflect impaired magnocellular/dorsal stream. Perceptual closure and illusory contours performance was evaluated in separate groups of 12 healthy volunteers during no TMS, and during repetitive 10 Hz rTMS stimulation over dorsal stream or vertex (TMS-vertex). Perceptual closure and illusory contours were performed in 11 schizophrenia patients, no TMS was applied in these patients. TMS effects were evaluated with repeated measures ANOVA across treatments. rTMS significantly increased perceptual closure identification thresholds, with significant difference between TMS-dorsal stream and no TMS. TMS-dorsal stream also significantly reduced perceptual closure but not illusory contours accuracy. Schizophrenia patients showed increased perceptual closure identification thresholds relative to controls in the no TMS condition, but similar to controls in the TMS-dorsal stream condition. Conclusions of this study are that magnocellular/dorsal stream input is critical for perceptual closure but not illusory contours performance, supporting both trickledown theories of normal perceptual closure function, and magnocellular/dorsal stream theories of visual dysfunction in schizophrenia.
Literature
go back to reference Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15(4):600–609CrossRefPubMed Bar M (2003) A cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15(4):600–609CrossRefPubMed
go back to reference Bocker KB, van Avermaete JA, van den Berg-Lenssen MM (1994) The international 10-20 system revisited: cartesian and spherical co-ordinates. Brain Topogr 6(3):231–235CrossRefPubMed Bocker KB, van Avermaete JA, van den Berg-Lenssen MM (1994) The international 10-20 system revisited: cartesian and spherical co-ordinates. Brain Topogr 6(3):231–235CrossRefPubMed
go back to reference Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, Mahoney J, Shpaner M, Jalbrzikowski M, Javitt DC (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(Pt 2):417–430CrossRefPubMed Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, Mahoney J, Shpaner M, Jalbrzikowski M, Javitt DC (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(Pt 2):417–430CrossRefPubMed
go back to reference Cash TF, Deagle EA 3rd (1997) The nature and extent of body-image disturbances in anorexia nervosa and bulimia nervosa: a meta-analysis. Int J Eat Disord 22(2):107–125CrossRefPubMed Cash TF, Deagle EA 3rd (1997) The nature and extent of body-image disturbances in anorexia nervosa and bulimia nervosa: a meta-analysis. Int J Eat Disord 22(2):107–125CrossRefPubMed
go back to reference Chen CM, Lakatos P, Shah AS, Mehta AD, Givre SJ, Javitt DC, Schroeder CE (2007) Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cereb Cortex 17(7):1561–1569CrossRefPubMed Chen CM, Lakatos P, Shah AS, Mehta AD, Givre SJ, Javitt DC, Schroeder CE (2007) Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cereb Cortex 17(7):1561–1569CrossRefPubMed
go back to reference Chouinard PA, Whitwell RL, Goodale MA (2009) The lateral-occipital and the inferior-frontal cortex play different roles during the naming of visually presented objects. Hum Brain Mapp 30(12):3851–3864CrossRefPubMed Chouinard PA, Whitwell RL, Goodale MA (2009) The lateral-occipital and the inferior-frontal cortex play different roles during the naming of visually presented objects. Hum Brain Mapp 30(12):3851–3864CrossRefPubMed
go back to reference Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale
go back to reference Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRefPubMed Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRefPubMed
go back to reference Doniger GM, Foxe JJ, Murray MM, Higgins BA, Snodgrass JG, Schroeder CE, Javitt DC (2000) Activation time course of ventral visual stream object-recognition areas: high density electrical mapping of perceptual closure processes. J Cogn Neurosci 12(4):615–621CrossRefPubMed Doniger GM, Foxe JJ, Murray MM, Higgins BA, Snodgrass JG, Schroeder CE, Javitt DC (2000) Activation time course of ventral visual stream object-recognition areas: high density electrical mapping of perceptual closure processes. J Cogn Neurosci 12(4):615–621CrossRefPubMed
go back to reference Doniger GM, Silipo G, Rabinowicz EF, Snodgrass JG, Javitt DC (2001) Impaired sensory processing as a basis for object-recognition deficits in schizophrenia. Am J Psychiatry 158(11):1818–1826CrossRefPubMed Doniger GM, Silipo G, Rabinowicz EF, Snodgrass JG, Javitt DC (2001) Impaired sensory processing as a basis for object-recognition deficits in schizophrenia. Am J Psychiatry 158(11):1818–1826CrossRefPubMed
go back to reference Doniger GM, Foxe JJ, Murray MM, Higgins BA, Javitt DC (2002) Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry 59(11):1011–1020CrossRefPubMed Doniger GM, Foxe JJ, Murray MM, Higgins BA, Javitt DC (2002) Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatry 59(11):1011–1020CrossRefPubMed
go back to reference Ellison A, Cowey A (2006) TMS can reveal contrasting functions of the dorsal and ventral visual processing streams. Exp Brain Res 175(4):618–625CrossRefPubMed Ellison A, Cowey A (2006) TMS can reveal contrasting functions of the dorsal and ventral visual processing streams. Exp Brain Res 175(4):618–625CrossRefPubMed
go back to reference Ellison A, Cowey A (2009) Differential and co-involvement of areas of the temporal and parietal streams in visual tasks. Neuropsychologia 47(6):1609–1614CrossRefPubMed Ellison A, Cowey A (2009) Differential and co-involvement of areas of the temporal and parietal streams in visual tasks. Neuropsychologia 47(6):1609–1614CrossRefPubMed
go back to reference Ellison A, Battelli L, Cowey A, Walsh V (2003) The effect of expectation on facilitation of colour/form conjunction tasks by TMS over area V5. Neuropsychologia 41(13):1794–1801CrossRefPubMed Ellison A, Battelli L, Cowey A, Walsh V (2003) The effect of expectation on facilitation of colour/form conjunction tasks by TMS over area V5. Neuropsychologia 41(13):1794–1801CrossRefPubMed
go back to reference Fecteau S, Walsh V (2012) Introduction: Brain stimulation in cognitive neuroscience. Brain Stimul 5(2):61–62CrossRefPubMed Fecteau S, Walsh V (2012) Introduction: Brain stimulation in cognitive neuroscience. Brain Stimul 5(2):61–62CrossRefPubMed
go back to reference Fenske MJ, Aminoff E, Gronau N, Bar M (2006) Top-down facilitation of visual object recognition: object-based and context-based contributions. Prog Brain Res 155:3–21CrossRefPubMed Fenske MJ, Aminoff E, Gronau N, Bar M (2006) Top-down facilitation of visual object recognition: object-based and context-based contributions. Prog Brain Res 155:3–21CrossRefPubMed
go back to reference Foxe JJ, Doniger GM, Javitt DC (2001) Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. NeuroReport 12(17):3815–3820CrossRefPubMed Foxe JJ, Doniger GM, Javitt DC (2001) Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. NeuroReport 12(17):3815–3820CrossRefPubMed
go back to reference Foxe JJ, Murray MM, Javitt DC (2005) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15(12):1914–1927CrossRefPubMed Foxe JJ, Murray MM, Javitt DC (2005) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15(12):1914–1927CrossRefPubMed
go back to reference Grosof DH, Shapley RM, Hawken MJ (1993) Macaque V1 neurons can signal ‘illusory’ contours. Nature 365(6446):550–552CrossRefPubMed Grosof DH, Shapley RM, Hawken MJ (1993) Macaque V1 neurons can signal ‘illusory’ contours. Nature 365(6446):550–552CrossRefPubMed
go back to reference Halgren E, Mendola J, Chong CD, Dale AM (2003) Cortical activation to illusory shapes as measured with magnetoencephalography. Neuroimage 18(4):1001–1009CrossRefPubMed Halgren E, Mendola J, Chong CD, Dale AM (2003) Cortical activation to illusory shapes as measured with magnetoencephalography. Neuroimage 18(4):1001–1009CrossRefPubMed
go back to reference Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276CrossRefPubMed Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276CrossRefPubMed
go back to reference Keane BP, Joseph J, Silverstein SM (2014) Late, not early, stages of Kanizsa shape perception are compromised in schizophrenia. Neuropsychologia 56:302–311CrossRefPubMedPubMedCentral Keane BP, Joseph J, Silverstein SM (2014) Late, not early, stages of Kanizsa shape perception are compromised in schizophrenia. Neuropsychologia 56:302–311CrossRefPubMedPubMedCentral
go back to reference Kim D, Zemon V, Saperstein A, Butler PD, Javitt DC (2005) Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis. Schizophr Res 76(1):55–65CrossRefPubMed Kim D, Zemon V, Saperstein A, Butler PD, Javitt DC (2005) Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis. Schizophr Res 76(1):55–65CrossRefPubMed
go back to reference Kim D, Wylie G, Pasternak R, Butler PD, Javitt DC (2006) Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 82(1):1–8CrossRefPubMed Kim D, Wylie G, Pasternak R, Butler PD, Javitt DC (2006) Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 82(1):1–8CrossRefPubMed
go back to reference Knebel JF, Javitt DC, Murray MM (2011) Impaired early visual response modulations to spatial information in chronic schizophrenia. Psychiatry Res 193(3):168–176CrossRefPubMedPubMedCentral Knebel JF, Javitt DC, Murray MM (2011) Impaired early visual response modulations to spatial information in chronic schizophrenia. Psychiatry Res 193(3):168–176CrossRefPubMedPubMedCentral
go back to reference Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11(2):224–231CrossRefPubMed Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11(2):224–231CrossRefPubMed
go back to reference Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509CrossRefPubMed Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509CrossRefPubMed
go back to reference Kveraga K, Boshyan J, Bar M (2007) Magnocellular projections as the trigger of top-down facilitation in recognition. J Neurosci 27(48):13232–13240CrossRefPubMed Kveraga K, Boshyan J, Bar M (2007) Magnocellular projections as the trigger of top-down facilitation in recognition. J Neurosci 27(48):13232–13240CrossRefPubMed
go back to reference Kveraga K, Ghuman AS, Kassam KS, Aminoff EA, Hamalainen MS, Chaumon M, Bar M (2011) Early onset of neural synchronization in the contextual associations network. Proc Natl Acad Sci USA 108(8):3389–3394CrossRefPubMedPubMedCentral Kveraga K, Ghuman AS, Kassam KS, Aminoff EA, Hamalainen MS, Chaumon M, Bar M (2011) Early onset of neural synchronization in the contextual associations network. Proc Natl Acad Sci USA 108(8):3389–3394CrossRefPubMedPubMedCentral
go back to reference Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579CrossRefPubMed Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579CrossRefPubMed
go back to reference Larsson J, Amunts K, Gulyas B, Malikovic A, Zilles K, Roland PE (1999) Neuronal correlates of real and illusory contour perception: functional anatomy with PET. Eur J Neurosci 11(11):4024–4036CrossRefPubMed Larsson J, Amunts K, Gulyas B, Malikovic A, Zilles K, Roland PE (1999) Neuronal correlates of real and illusory contour perception: functional anatomy with PET. Eur J Neurosci 11(11):4024–4036CrossRefPubMed
go back to reference Lavidor M, Walsh V (2003) A magnetic stimulation examination of orthographic neighborhood effects in visual word recognition. J Cogn Neurosci 15(3):354–363CrossRefPubMed Lavidor M, Walsh V (2003) A magnetic stimulation examination of orthographic neighborhood effects in visual word recognition. J Cogn Neurosci 15(3):354–363CrossRefPubMed
go back to reference Lerner Y, Hendler T, Malach R (2002) Object-completion effects in the human lateral occipital complex. Cereb Cortex 12(2):163–177CrossRefPubMed Lerner Y, Hendler T, Malach R (2002) Object-completion effects in the human lateral occipital complex. Cereb Cortex 12(2):163–177CrossRefPubMed
go back to reference Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139CrossRefPubMedPubMedCentral Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139CrossRefPubMedPubMedCentral
go back to reference Martinez A, Hillyard SA, Dias EC, Hagler DJ Jr, Butler PD, Guilfoyle DN, Jalbrzikowski M, Silipo G, Javitt DC (2008) Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci 28(30):7492–7500CrossRefPubMed Martinez A, Hillyard SA, Dias EC, Hagler DJ Jr, Butler PD, Guilfoyle DN, Jalbrzikowski M, Silipo G, Javitt DC (2008) Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci 28(30):7492–7500CrossRefPubMed
go back to reference Martinez A, Hillyard SA, Bickel S, Dias EC, Butler PD, Javitt DC (2011) Consequences of magnocellular dysfunction on processing attended information in schizophrenia. Cereb Cortex 22:1282–1293CrossRefPubMed Martinez A, Hillyard SA, Bickel S, Dias EC, Butler PD, Javitt DC (2011) Consequences of magnocellular dysfunction on processing attended information in schizophrenia. Cereb Cortex 22:1282–1293CrossRefPubMed
go back to reference McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A (2011) Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry 70(1):19–27CrossRefPubMedPubMedCentral McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A (2011) Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry 70(1):19–27CrossRefPubMedPubMedCentral
go back to reference Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19(19):8560–8572PubMed Mendola JD, Dale AM, Fischl B, Liu AK, Tootell RB (1999) The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. J Neurosci 19(19):8560–8572PubMed
go back to reference Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, Foxe JJ (2002) The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. J Neurosci 22(12):5055–5073PubMed Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, Foxe JJ (2002) The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. J Neurosci 22(12):5055–5073PubMed
go back to reference Murray MM, Foxe DM, Javitt DC, Foxe JJ (2004) Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans. J Neurosci 24(31):6898–6903CrossRefPubMed Murray MM, Foxe DM, Javitt DC, Foxe JJ (2004) Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans. J Neurosci 24(31):6898–6903CrossRefPubMed
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
go back to reference O’Shea J, Walsh V (2006) Cognitive neuroscience: trickle-down theories of vision. Curr Biol 16(6):R206–R209CrossRefPubMed O’Shea J, Walsh V (2006) Cognitive neuroscience: trickle-down theories of vision. Curr Biol 16(6):R206–R209CrossRefPubMed
go back to reference Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21(2):207–221CrossRefPubMed Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21(2):207–221CrossRefPubMed
go back to reference Salvador R, Miranda PC, Roth Y, Zangen A (2009) High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation. Phys Med Biol 54(10):3113–3128CrossRefPubMed Salvador R, Miranda PC, Roth Y, Zangen A (2009) High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation. Phys Med Biol 54(10):3113–3128CrossRefPubMed
go back to reference Sehatpour P, Molholm S, Javitt DC, Foxe JJ (2006) Spatiotemporal dynamics of human object recognition processing: an integrated high-density electrical mapping and functional imaging study of “closure” processes. Neuroimage 29(2):605–618CrossRefPubMed Sehatpour P, Molholm S, Javitt DC, Foxe JJ (2006) Spatiotemporal dynamics of human object recognition processing: an integrated high-density electrical mapping and functional imaging study of “closure” processes. Neuroimage 29(2):605–618CrossRefPubMed
go back to reference Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt DC, Stanton PK, Foxe JJ (2008) A human intracranial study of long-range oscillatory coherence across a frontal–occipital–hippocampal brain network during visual object processing. Proc Natl Acad Sci USA 105(11):4399–4404CrossRefPubMedPubMedCentral Sehatpour P, Molholm S, Schwartz TH, Mahoney JR, Mehta AD, Javitt DC, Stanton PK, Foxe JJ (2008) A human intracranial study of long-range oscillatory coherence across a frontal–occipital–hippocampal brain network during visual object processing. Proc Natl Acad Sci USA 105(11):4399–4404CrossRefPubMedPubMedCentral
go back to reference Sehatpour P, Dias EC, Butler PD, Revheim N, Guilfoyle DN, Foxe JJ, Javitt DC (2010) Impaired visual object processing across an occipital–frontal–hippocampal brain network in schizophrenia: an integrated neuroimaging study. Arch Gen Psychiatry 67(8):772–782CrossRefPubMedPubMedCentral Sehatpour P, Dias EC, Butler PD, Revheim N, Guilfoyle DN, Foxe JJ, Javitt DC (2010) Impaired visual object processing across an occipital–frontal–hippocampal brain network in schizophrenia: an integrated neuroimaging study. Arch Gen Psychiatry 67(8):772–782CrossRefPubMedPubMedCentral
go back to reference Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33PubMed Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33PubMed
go back to reference Silvanto J, Lavie N, Walsh V (2005) Double dissociation of V1 and V5/MT activity in visual awareness. Cereb Cortex 15(11):1736–1741CrossRefPubMed Silvanto J, Lavie N, Walsh V (2005) Double dissociation of V1 and V5/MT activity in visual awareness. Cereb Cortex 15(11):1736–1741CrossRefPubMed
go back to reference Snodgrass JG, Corwin J (1988) Perceptual identification thresholds for 150 fragmented pictures from the Snodgrass and Vanderwart picture set. Percept Mot Skills 67(1):3–36CrossRefPubMed Snodgrass JG, Corwin J (1988) Perceptual identification thresholds for 150 fragmented pictures from the Snodgrass and Vanderwart picture set. Percept Mot Skills 67(1):3–36CrossRefPubMed
go back to reference Straube S, Fahle M (2011) Visual detection and identification are not the same: evidence from psychophysics and fMRI. Brain Cogn 75(1):29–38CrossRefPubMed Straube S, Fahle M (2011) Visual detection and identification are not the same: evidence from psychophysics and fMRI. Brain Cogn 75(1):29–38CrossRefPubMed
go back to reference Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115(7):1697–1708CrossRefPubMed Thielscher A, Kammer T (2004) Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin Neurophysiol 115(7):1697–1708CrossRefPubMed
go back to reference Vaccarino V, Kasl SV, Abramson J, Krumholz HM (2001) Depressive symptoms and risk of functional decline and death in patients with heart failure. J Am Coll Cardiol 38(1):199–205CrossRefPubMed Vaccarino V, Kasl SV, Abramson J, Krumholz HM (2001) Depressive symptoms and risk of functional decline and death in patients with heart failure. J Am Coll Cardiol 38(1):199–205CrossRefPubMed
go back to reference Wokke ME, Vandenbroucke AR, Scholte HS, Lamme VA (2013) Confuse your illusion: feedback to early visual cortex contributes to perceptual completion. Psychol Sci 24(1):63–71CrossRefPubMed Wokke ME, Vandenbroucke AR, Scholte HS, Lamme VA (2013) Confuse your illusion: feedback to early visual cortex contributes to perceptual completion. Psychol Sci 24(1):63–71CrossRefPubMed
Metadata
Title
Applying Transcranial Magnetic Stimulation (TMS) Over the Dorsal Visual Pathway Induces Schizophrenia-like Disruption of Perceptual Closure
Authors
Revital Amiaz
Dana Vainiger
Ari A. Gershon
Mark Weiser
Michal Lavidor
Daniel C. Javitt
Publication date
01-07-2016
Publisher
Springer US
Published in
Brain Topography / Issue 4/2016
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0487-1

Other articles of this Issue 4/2016

Brain Topography 4/2016 Go to the issue