Skip to main content
Top
Published in: Brain Topography 2/2016

01-03-2016 | Brief Communication

A Novel Approach Based on Data Redundancy for Feature Extraction of EEG Signals

Authors: Hafeez Ullah Amin, Aamir Saeed Malik, Nidal Kamel, Muhammad Hussain

Published in: Brain Topography | Issue 2/2016

Login to get access

Abstract

Feature extraction and classification for electroencephalogram (EEG) in medical applications is a challenging task. The EEG signals produce a huge amount of redundant data or repeating information. This redundancy causes potential hurdles in EEG analysis. Hence, we propose to use this redundant information of EEG as a feature to discriminate and classify different EEG datasets. In this study, we have proposed a JPEG2000 based approach for computing data redundancy from multi-channels EEG signals and have used the redundancy as a feature for classification of EEG signals by applying support vector machine, multi-layer perceptron and k-nearest neighbors classifiers. The approach is validated on three EEG datasets and achieved high accuracy rate (95–99 %) in the classification. Dataset-1 includes the EEG signals recorded during fluid intelligence test, dataset-2 consists of EEG signals recorded during memory recall test, and dataset-3 has epileptic seizure and non-seizure EEG. The findings demonstrate that the approach has the ability to extract robust feature and classify the EEG signals in various applications including clinical as well as normal EEG patterns.
Footnotes
1
Large dataset, Epilepsy EEG dataset collected at Children's Hospital Boston, Massachusetts Institute of Technology. Available: http://​physionet.​org/​pn6/​chbmit/​.
 
2
Large dataset, EEG Epilepsy dataset collected at Epilepsy Center of the University Hospital of Freiburg. Available: http://​epileptologie-bonn.​de/​cms/​.
 
Literature
go back to reference Acharya UR, Sree SV, Ang PCA, Yanti R, Suri JS (2012a) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22:1250002CrossRefPubMed Acharya UR, Sree SV, Ang PCA, Yanti R, Suri JS (2012a) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22:1250002CrossRefPubMed
go back to reference Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng K-H, Suri JS (2012b) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7:401–408CrossRef Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng K-H, Suri JS (2012b) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7:401–408CrossRef
go back to reference Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87CrossRefPubMed Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87CrossRefPubMed
go back to reference Ahammad N, Fathima T, Joseph P (2014) Detection of epileptic seizure event and onset using EEG. BioMed Res Int 2014 Ahammad N, Fathima T, Joseph P (2014) Detection of epileptic seizure event and onset using EEG. BioMed Res Int 2014
go back to reference Amin HU, Malik AS, Subhani AR, Badruddin N, Chooi W-T (2013) Dynamics of scalp potential and autonomic nerve activity during intelligence test. In: Lee M et al (eds) Neural Information Processing, vol 8226. Springer, Berlin, pp 9–16CrossRef Amin HU, Malik AS, Subhani AR, Badruddin N, Chooi W-T (2013) Dynamics of scalp potential and autonomic nerve activity during intelligence test. In: Lee M et al (eds) Neural Information Processing, vol 8226. Springer, Berlin, pp 9–16CrossRef
go back to reference Amin HU, Malik AS, Badruddin N, Chooi W-T (2014) Brain behavior in learning and memory recall process: a high-resolution eeg analysis. In: The 15th International Conference on Biomedical Engineering, vol. 43, J. Goh, Ed., ed: Springer International Publishing, 2014, pp. 683–686 Amin HU, Malik AS, Badruddin N, Chooi W-T (2014) Brain behavior in learning and memory recall process: a high-resolution eeg analysis. In: The 15th International Conference on Biomedical Engineering, vol. 43, J. Goh, Ed., ed: Springer International Publishing, 2014, pp. 683–686
go back to reference Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi W-T (2015a) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 38:139–149CrossRefPubMed Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi W-T (2015a) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 38:139–149CrossRefPubMed
go back to reference Amin HU, Malik AS, Mumtaz W, Badruddin N, Kamel N (2015b) Evaluation of passive polarized stereoscopic 3D display for visual and mental fatigues. In: Presented at the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, Milan, Italy, 2015 Amin HU, Malik AS, Mumtaz W, Badruddin N, Kamel N (2015b) Evaluation of passive polarized stereoscopic 3D display for visual and mental fatigues. In: Presented at the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, Milan, Italy, 2015
go back to reference Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64:061907CrossRef Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64:061907CrossRef
go back to reference Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Carugo O, Eisenhabe F (eds) Data mining techniques for the life sciences. Springer, Berlin, pp 223–239CrossRef Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Carugo O, Eisenhabe F (eds) Data mining techniques for the life sciences. Springer, Berlin, pp 223–239CrossRef
go back to reference Blankertz B, Lemm S, Treder M, Haufe S, Müller K-R (2011) Single-trial analysis and classification of ERP components—a tutorial. Neuroimage 56:814–825CrossRefPubMed Blankertz B, Lemm S, Treder M, Haufe S, Müller K-R (2011) Single-trial analysis and classification of ERP components—a tutorial. Neuroimage 56:814–825CrossRefPubMed
go back to reference Cecotti H, Eckstein MP, Giesbrecht B (2014) Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering. IEEE Trans Neural Netw Learn Syst 25:2030–2042CrossRefPubMed Cecotti H, Eckstein MP, Giesbrecht B (2014) Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering. IEEE Trans Neural Netw Learn Syst 25:2030–2042CrossRefPubMed
go back to reference Chen L-L, Zhang J, Zou J-Z, Zhao C-J, Wang G-S (2014) A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomed Signal Process Control 10:1–10CrossRef Chen L-L, Zhang J, Zou J-Z, Zhao C-J, Wang G-S (2014) A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomed Signal Process Control 10:1–10CrossRef
go back to reference Demiralp T, Ademoglu A, Istefanopulos Y, Başar-Eroglu C, Başar E (2001) Wavelet analysis of oddball P300. Int J Psychophysiol 39:221–227CrossRefPubMed Demiralp T, Ademoglu A, Istefanopulos Y, Başar-Eroglu C, Başar E (2001) Wavelet analysis of oddball P300. Int J Psychophysiol 39:221–227CrossRefPubMed
go back to reference Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455CrossRef Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455CrossRef
go back to reference Doughty MJ, Naase T, Button NF (2009) Frequent spontaneous eyeblink activity associated with reduced conjunctival surface (trigeminal nerve) tactile sensitivity. Graefe’s Arch Clin Exp Ophthalmol 247:939–946CrossRef Doughty MJ, Naase T, Button NF (2009) Frequent spontaneous eyeblink activity associated with reduced conjunctival surface (trigeminal nerve) tactile sensitivity. Graefe’s Arch Clin Exp Ophthalmol 247:939–946CrossRef
go back to reference Faust O, Acharya UR, Min LC, Sputh BH (2010) Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int J Neural Syst 20:159–176CrossRefPubMed Faust O, Acharya UR, Min LC, Sputh BH (2010) Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int J Neural Syst 20:159–176CrossRefPubMed
go back to reference Fu K, Qu J, Chai Y, Dong Y (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15–22CrossRef Fu K, Qu J, Chai Y, Dong Y (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15–22CrossRef
go back to reference Fukuda K (2001) Eye blinks: new indices for the detection of deception. Int J Psychophysiol 40:239–245CrossRefPubMed Fukuda K (2001) Eye blinks: new indices for the detection of deception. Int J Psychophysiol 40:239–245CrossRefPubMed
go back to reference Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River
go back to reference Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484CrossRefPubMed Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484CrossRefPubMed
go back to reference Herman P, Prasad G, McGinnity TM, Coyle D (2008) Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 16:317–326CrossRefPubMed Herman P, Prasad G, McGinnity TM, Coyle D (2008) Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 16:317–326CrossRefPubMed
go back to reference G Higgins, S Faul, RP McEvoy, B McGinley, M Glavin, WP Marnane, and E Jones (2010) EEG compression using JPEG2000: how much loss is too much?. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 614–617 G Higgins, S Faul, RP McEvoy, B McGinley, M Glavin, WP Marnane, and E Jones (2010) EEG compression using JPEG2000: how much loss is too much?. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 614–617
go back to reference Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38:10499–10505CrossRef Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38:10499–10505CrossRef
go back to reference Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87CrossRef Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87CrossRef
go back to reference P. Jahankhani, V. Kodogiannis, and K. Revett (2006) EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanas off 2006 International Symposium on Modern Computing, 2006. JVA’06, pp. 12–124 P. Jahankhani, V. Kodogiannis, and K. Revett (2006) EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanas off 2006 International Symposium on Modern Computing, 2006. JVA’06, pp. 12–124
go back to reference Jahidin AH, Ali MSAM, Taib MN, Tahir NM, Yassin IM, Lias S (2014) Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network. Comput. Methods Prog. Biomed. 114:50–59CrossRef Jahidin AH, Ali MSAM, Taib MN, Tahir NM, Yassin IM, Lias S (2014) Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network. Comput. Methods Prog. Biomed. 114:50–59CrossRef
go back to reference Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133:271–279CrossRef Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133:271–279CrossRef
go back to reference Taubman D, Marcellin MW (eds) (2002) JPEG2000 Image compression fundamentals, standards and practice: image compression fundamentals, standards, and practice, vol 1, 1st edn. Springer US. Taubman D, Marcellin MW (eds) (2002) JPEG2000 Image compression fundamentals, standards and practice: image compression fundamentals, standards, and practice, vol 1, 1st edn. Springer US.
go back to reference Musselman M, Djurdjanovic D (2012) Time–frequency distributions in the classification of epilepsy from EEG signals. Expert Syst Appl 39:11413–11422CrossRef Musselman M, Djurdjanovic D (2012) Time–frequency distributions in the classification of epilepsy from EEG signals. Expert Syst Appl 39:11413–11422CrossRef
go back to reference Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines. Expert Syst Appl 39:202–209CrossRef Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines. Expert Syst Appl 39:202–209CrossRef
go back to reference Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38:13475–13481CrossRef Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38:13475–13481CrossRef
go back to reference Parvez MZ, Paul M (2014) Epileptic seizure detection by analyzing EEG signals using different transformation techniques. Neurocomputing 145:190–200CrossRef Parvez MZ, Paul M (2014) Epileptic seizure detection by analyzing EEG signals using different transformation techniques. Neurocomputing 145:190–200CrossRef
go back to reference RQ Quiroga (2005) Single-trial event-related potentials with wavelet denoising: method and applications. In: International Congress Series, 2005, pp. 429–432 RQ Quiroga (2005) Single-trial event-related potentials with wavelet denoising: method and applications. In: International Congress Series, 2005, pp. 429–432
go back to reference Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049PubMed Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049PubMed
go back to reference Sabeti M, Katebi S, Boostani R (2009) Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 47:263–274CrossRefPubMed Sabeti M, Katebi S, Boostani R (2009) Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif Intell Med 47:263–274CrossRefPubMed
go back to reference Sabeti M, Katebi SD, Boostani R, Price GW (2011) A new approach for EEG signal classification of schizophrenic and control participants. Expert Syst Appl 38:2063–2071CrossRef Sabeti M, Katebi SD, Boostani R, Price GW (2011) A new approach for EEG signal classification of schizophrenic and control participants. Expert Syst Appl 38:2063–2071CrossRef
go back to reference Shoeb AH and Guttag JV (2010) Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 975–982 Shoeb AH and Guttag JV (2010) Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 975–982
go back to reference Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210:132–146CrossRefPubMed Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210:132–146CrossRefPubMed
go back to reference Stewart AX, Nuthmann A, Sanguinetti G (2014) Single-trial classification of EEG in a visual object task using ICA and machine learning. J Neurosci Methods 228:1–14CrossRefPubMed Stewart AX, Nuthmann A, Sanguinetti G (2014) Single-trial classification of EEG in a visual object task using ICA and machine learning. J Neurosci Methods 228:1–14CrossRefPubMed
go back to reference Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093CrossRef Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093CrossRef
go back to reference Subasi A, Ismail Gursoy M (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666CrossRef Subasi A, Ismail Gursoy M (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666CrossRef
go back to reference Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2014) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr 28(1):33–46CrossRefPubMed Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2014) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr 28(1):33–46CrossRefPubMed
go back to reference Tong S, Thakor NV (2009) Quantitative EEG analysis methods and clinical applications. Artech House, Boston Tong S, Thakor NV (2009) Quantitative EEG analysis methods and clinical applications. Artech House, Boston
go back to reference Vidaurre C, Krämer N, Blankertz B, Schlögl A (2009) Time domain parameters as a feature for EEG-based brain–computer interfaces. Neural Netw 22:1313–1319CrossRefPubMed Vidaurre C, Krämer N, Blankertz B, Schlögl A (2009) Time domain parameters as a feature for EEG-based brain–computer interfaces. Neural Netw 22:1313–1319CrossRefPubMed
go back to reference Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38:14314–14320 Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38:14314–14320
go back to reference Wu L and Neskovic P (2007) Classifying EEG data into different memory loads across subjects. In: Artificial Neural Networks—ICANN 2007, ed: Springer, 2007, pp. 149–158 Wu L and Neskovic P (2007) Classifying EEG data into different memory loads across subjects. In: Artificial Neural Networks—ICANN 2007, ed: Springer, 2007, pp. 149–158
go back to reference Yuan Q, Zhou W, Liu Y, Wang J (2012) Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 24:415–421CrossRefPubMed Yuan Q, Zhou W, Liu Y, Wang J (2012) Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 24:415–421CrossRefPubMed
go back to reference P Zarjam, J Epps, and NH Lovell (2012) Characterizing mental load in an arithmetic task using entropy-based features. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), 2012, pp. 199–204 P Zarjam, J Epps, and NH Lovell (2012) Characterizing mental load in an arithmetic task using entropy-based features. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), 2012, pp. 199–204
Metadata
Title
A Novel Approach Based on Data Redundancy for Feature Extraction of EEG Signals
Authors
Hafeez Ullah Amin
Aamir Saeed Malik
Nidal Kamel
Muhammad Hussain
Publication date
01-03-2016
Publisher
Springer US
Published in
Brain Topography / Issue 2/2016
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-015-0462-2

Other articles of this Issue 2/2016

Brain Topography 2/2016 Go to the issue