Skip to main content
Top
Published in: Brain Topography 3/2015

Open Access 01-05-2015 | Original Paper

Hemispheric Asymmetry of Auditory Mismatch Negativity Elicited by Spectral and Temporal Deviants: A Magnetoencephalographic Study

Authors: Hidehiko Okamoto, Ryusuke Kakigi

Published in: Brain Topography | Issue 3/2015

Login to get access

Abstract

One of the major challenges in human brain science is the functional hemispheric asymmetry of auditory processing. Behavioral and neurophysiological studies have demonstrated that speech processing is dominantly handled in the left hemisphere, whereas music processing dominantly occurs in the right. Using magnetoencephalography, we measured the auditory mismatch negativity elicited by band-pass filtered click-trains, which deviated from frequently presented standard sound signals in a spectral or temporal domain. The results showed that spectral and temporal deviants were dominantly processed in the right and left hemispheres, respectively. Hemispheric asymmetry was not limited to high-level cognitive processes, but also originated from the pre-attentive neural processing stage represented by mismatch negativity.
Appendix
Available only for authorised users
Literature
go back to reference Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16:38–51CrossRefPubMed Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16:38–51CrossRefPubMed
go back to reference Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258:9–12CrossRefPubMed Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258:9–12CrossRefPubMed
go back to reference Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10:536–540CrossRefPubMed Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10:536–540CrossRefPubMed
go back to reference Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312CrossRefPubMed Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312CrossRefPubMed
go back to reference Bendor D, Wang XQ (2007) Differential neural coding of acoustic flutter within primate auditory cortex. Nat Neurosci 10:763–771CrossRefPubMed Bendor D, Wang XQ (2007) Differential neural coding of acoustic flutter within primate auditory cortex. Nat Neurosci 10:763–771CrossRefPubMed
go back to reference Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395CrossRefPubMed Boemio A, Fromm S, Braun A, Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci 8:389–395CrossRefPubMed
go back to reference Broca P (1861) Remarques sur le siége de la faculté du langage articulé suivies d’une observation d’aphémie (perte de la parole). Bull Soc Anat 6:330–357 Broca P (1861) Remarques sur le siége de la faculté du langage articulé suivies d’une observation d’aphémie (perte de la parole). Bull Soc Anat 6:330–357
go back to reference Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680CrossRefPubMed Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680CrossRefPubMed
go back to reference Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064CrossRefPubMed Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064CrossRefPubMed
go back to reference Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15:2748–2755PubMed Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15:2748–2755PubMed
go back to reference Griffiths TD, Johnsrude I, Dean JL, Green GG (1999) A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport 10:3825–3830CrossRefPubMed Griffiths TD, Johnsrude I, Dean JL, Green GG (1999) A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport 10:3825–3830CrossRefPubMed
go back to reference Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650CrossRefPubMed Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage 16:638–650CrossRefPubMed
go back to reference Jamison HL, Watkins KE, Bishop DV, Matthews PM (2006) Hemispheric specialization for processing auditory nonspeech stimuli. Cereb Cortex 16:1266–1275CrossRefPubMed Jamison HL, Watkins KE, Bishop DV, Matthews PM (2006) Hemispheric specialization for processing auditory nonspeech stimuli. Cereb Cortex 16:1266–1275CrossRefPubMed
go back to reference Joos M (1948) Acoustic phonetics. Language monograph, vol 23. Linguistic Society of America, Baltimore Joos M (1948) Acoustic phonetics. Language monograph, vol 23. Linguistic Society of America, Baltimore
go back to reference Kujala T, Tervaniemi M, Schroger E (2007) The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol 74:1–19CrossRefPubMed Kujala T, Tervaniemi M, Schroger E (2007) The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol 74:1–19CrossRefPubMed
go back to reference Lappe C, Steinsträter O, Pantev C (2013) A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity. PLoS One 8:e61296CrossRefPubMedCentralPubMed Lappe C, Steinsträter O, Pantev C (2013) A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity. PLoS One 8:e61296CrossRefPubMedCentralPubMed
go back to reference Moore BCJ (2003) An introduction to the psychology of hearing. Academic Press, Boston Moore BCJ (2003) An introduction to the psychology of hearing. Academic Press, Boston
go back to reference Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425CrossRefPubMed Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425CrossRefPubMed
go back to reference Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRef Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRef
go back to reference Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590CrossRefPubMed Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590CrossRefPubMed
go back to reference Okamoto H, Stracke H, Draganova R, Pantev C (2009) Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cereb Cortex 19:2290–2297CrossRefPubMed Okamoto H, Stracke H, Draganova R, Pantev C (2009) Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cereb Cortex 19:2290–2297CrossRefPubMed
go back to reference Okamoto H, Teismann H, Kakigi R, Pantev C (2012) Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex. Front Psychol 3:149CrossRefPubMedCentralPubMed Okamoto H, Teismann H, Kakigi R, Pantev C (2012) Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex. Front Psychol 3:149CrossRefPubMedCentralPubMed
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
go back to reference Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255CrossRef Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41:245–255CrossRef
go back to reference Sakai M, Chimoto S, Qin L, Sato Y (2009) Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: relevance to auditory scene analysis. Brain Res Cogn Brain Res 1265:80–92 Sakai M, Chimoto S, Qin L, Sato Y (2009) Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: relevance to auditory scene analysis. Brain Res Cogn Brain Res 1265:80–92
go back to reference Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304CrossRefPubMed Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304CrossRefPubMed
go back to reference Shtyrov Y, Kujala T, Palva S, Ilmoniemi RJ, Naatanen R (2000) Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres. Neuroimage 12:657–663CrossRefPubMed Shtyrov Y, Kujala T, Palva S, Ilmoniemi RJ, Naatanen R (2000) Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres. Neuroimage 12:657–663CrossRefPubMed
go back to reference Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94:445–453CrossRefPubMed Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94:445–453CrossRefPubMed
go back to reference Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47CrossRefPubMed Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47CrossRefPubMed
go back to reference Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, Näätänen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9:330–336CrossRefPubMed Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi RJ, Näätänen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9:330–336CrossRefPubMed
go back to reference Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of meg data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol Suppl 95:189–200CrossRef Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of meg data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol Suppl 95:189–200CrossRef
go back to reference Vos PG, Troost JM (1989) Ascending and descending melodic intervals—statistical findings and their perceptual relevance. Music Percept 6:383–396CrossRef Vos PG, Troost JM (1989) Ascending and descending melodic intervals—statistical findings and their perceptual relevance. Music Percept 6:383–396CrossRef
go back to reference Warrier CM, Zatorre RJ (2002) Influence of tonal context and timbral variation on perception of pitch. Percept Psychophys 64:198–207CrossRefPubMed Warrier CM, Zatorre RJ (2002) Influence of tonal context and timbral variation on perception of pitch. Percept Psychophys 64:198–207CrossRefPubMed
go back to reference Wernicke C (1874) Symptomenkomplex. Eine psychologische Studie auf anatomischer Basis. Cohn und Weigert, Breslau Wernicke C (1874) Symptomenkomplex. Eine psychologische Studie auf anatomischer Basis. Cohn und Weigert, Breslau
go back to reference Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953CrossRefPubMed Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953CrossRefPubMed
go back to reference Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14:1908–1919PubMed Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14:1908–1919PubMed
go back to reference Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46CrossRefPubMed Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46CrossRefPubMed
Metadata
Title
Hemispheric Asymmetry of Auditory Mismatch Negativity Elicited by Spectral and Temporal Deviants: A Magnetoencephalographic Study
Authors
Hidehiko Okamoto
Ryusuke Kakigi
Publication date
01-05-2015
Publisher
Springer US
Published in
Brain Topography / Issue 3/2015
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-013-0347-1

Other articles of this Issue 3/2015

Brain Topography 3/2015 Go to the issue