Skip to main content
Top
Published in: Brain Topography 4/2014

01-07-2014 | Review

An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus

Authors: Flora M. Antunes, Manuel S. Malmierca

Published in: Brain Topography | Issue 4/2014

Login to get access

Abstract

In the auditory brain, some populations of neurons exhibit stimulus-specific adaptation (SSA), whereby they adapt to frequently occurring stimuli but retain sensitivity to stimuli that are rare. SA has been observed in auditory structures from the midbrain to the primary auditory cortex (A1) and has been proposed to be a precursor to the generation of deviance detection. SSA is strongly expressed in non-lemniscal regions of the medial geniculate body (MGB), the principal nucleus of the auditory thalamus. In this account we review the state of the art of SSA research in the MGB, highlighting the importance of this auditory centre in detecting sounds that may be relevant for survival.
Literature
go back to reference Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):220–224PubMed Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):220–224PubMed
go back to reference Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV (2011) Cortical auditory adaptation in the awake rat and the role of potassium currents. Cereb Cortex 21(5):977–990. doi:10.1093/cercor/bhq163 PubMed Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV (2011) Cortical auditory adaptation in the awake rat and the role of potassium currents. Cereb Cortex 21(5):977–990. doi:10.​1093/​cercor/​bhq163 PubMed
go back to reference Aguillon BN, Nieto J, Escera C, Malmierca MS (2013) Response to complex patterns of regularity in the inferior colliculus of the anesthetized rat. In: ARO 36th annual midwinter meeting, Baltimore, MA, USA, 16–20 Feb 2013, p 321 Aguillon BN, Nieto J, Escera C, Malmierca MS (2013) Response to complex patterns of regularity in the inferior colliculus of the anesthetized rat. In: ARO 36th annual midwinter meeting, Baltimore, MA, USA, 16–20 Feb 2013, p 321
go back to reference Alitto HJ, Usrey WM (2003) Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13(4):440–445PubMed Alitto HJ, Usrey WM (2003) Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13(4):440–445PubMed
go back to reference Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37(1):52–62. doi:10.1111/ejn.12018 PubMed Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37(1):52–62. doi:10.​1111/​ejn.​12018 PubMed
go back to reference Antunes FM, Covey E, Malmierca MS (2010a) Is there stimulus-specific adaptation in the medial geniculate body of the rat? In: Lopez-Poveda EA, Palmer AR, Meddis R (eds) The neurophysiological bases of auditory perception. Springer, New York, pp 535–544. doi:10.1007/978-1-4419-5686-6_49 Antunes FM, Covey E, Malmierca MS (2010a) Is there stimulus-specific adaptation in the medial geniculate body of the rat? In: Lopez-Poveda EA, Palmer AR, Meddis R (eds) The neurophysiological bases of auditory perception. Springer, New York, pp 535–544. doi:10.​1007/​978-1-4419-5686-6_​49
go back to reference Bajo VM, Merchan MA, Lopez DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334(2):241–262. doi:10.1002/cne.903340207 PubMed Bajo VM, Merchan MA, Lopez DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334(2):241–262. doi:10.​1002/​cne.​903340207 PubMed
go back to reference Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AE, de Ribaupierre Y, de Ribaupierre F (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hearing Res 83(1–2):161–174 Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AE, de Ribaupierre Y, de Ribaupierre F (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hearing Res 83(1–2):161–174
go back to reference Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016PubMed Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016PubMed
go back to reference Bartlett EL, Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113(4):957–974PubMed Bartlett EL, Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113(4):957–974PubMed
go back to reference Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100(4):811–828PubMed Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100(4):811–828PubMed
go back to reference Bäuerle P, von der Behrens W, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31(26):9708–9722. doi:10.1523/JNEUROSCI.5814-10.2011 PubMed Bäuerle P, von der Behrens W, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31(26):9708–9722. doi:10.​1523/​JNEUROSCI.​5814-10.​2011 PubMed
go back to reference Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98(2):261–274PubMed Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98(2):261–274PubMed
go back to reference Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98(2):275–286PubMed Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98(2):275–286PubMed
go back to reference Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695–702PubMed Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695–702PubMed
go back to reference Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3(11):2365–2380PubMed Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3(11):2365–2380PubMed
go back to reference Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20(1):89–108. doi:10.1093/cercor/bhp082 PubMedCentralPubMed Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20(1):89–108. doi:10.​1093/​cercor/​bhp082 PubMedCentralPubMed
go back to reference Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528. doi:10.1002/cne.20888 PubMedCentralPubMed Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528. doi:10.​1002/​cne.​20888 PubMedCentralPubMed
go back to reference Carandini M (2000) Visual cortex: fatigue and adaptation. Curr Biol 10(16):R605–R607PubMed Carandini M (2000) Visual cortex: fatigue and adaptation. Curr Biol 10(16):R605–R607PubMed
go back to reference Carral V, Corral MJ, Escera C (2005a) Auditory event-related potentials as a function of abstract change magnitude. NeuroReport 16(3):301–305PubMed Carral V, Corral MJ, Escera C (2005a) Auditory event-related potentials as a function of abstract change magnitude. NeuroReport 16(3):301–305PubMed
go back to reference Cetas JS, Price RO, Crowe J, Velenovsky DS, McMullen NT (2003) Dendritic orientation and laminar architecture in the rabbit auditory thalamus. J Comp Neurol 458(3):307–317. doi:10.1002/cne.10595 PubMed Cetas JS, Price RO, Crowe J, Velenovsky DS, McMullen NT (2003) Dendritic orientation and laminar architecture in the rabbit auditory thalamus. J Comp Neurol 458(3):307–317. doi:10.​1002/​cne.​10595 PubMed
go back to reference Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3):437–446PubMed Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3):437–446PubMed
go back to reference Clerici WJ, Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. J Comp Neurol 297(1):14–31. doi:10.1002/cne.902970103 PubMed Clerici WJ, Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. J Comp Neurol 297(1):14–31. doi:10.​1002/​cne.​902970103 PubMed
go back to reference Condon CD, Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav Neurosci 105(3):416–430PubMed Condon CD, Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav Neurosci 105(3):416–430PubMed
go back to reference Csepe V, Karmos G, Molnar M (1987a) Effects of signal probability on sensory evoked potentials in cats. Int J Neurosci 33(1–2):61–71PubMed Csepe V, Karmos G, Molnar M (1987a) Effects of signal probability on sensory evoked potentials in cats. Int J Neurosci 33(1–2):61–71PubMed
go back to reference Csepe V, Karmos G, Molnar M (1987b) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66(6):571–578PubMed Csepe V, Karmos G, Molnar M (1987b) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66(6):571–578PubMed
go back to reference de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 295(5):822–836. doi:10.1002/ar.22454 de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 295(5):822–836. doi:10.​1002/​ar.​22454
go back to reference De Ribaupierre F (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Romand GEaR (ed) The central auditory system. Oxford University Press, Oxford, p 317–397 De Ribaupierre F (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Romand GEaR (ed) The central auditory system. Oxford University Press, Oxford, p 317–397
go back to reference deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583):610–613. doi:10.1038/381610a0 PubMed deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583):610–613. doi:10.​1038/​381610a0 PubMed
go back to reference Doron NN, Ledoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360. doi:10.1002/cne.10412 PubMed Doron NN, Ledoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360. doi:10.​1002/​cne.​10412 PubMed
go back to reference Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32(49):17762–17774. doi:10.1523/JNEUROSCI.3190-12.2012 PubMed Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32(49):17762–17774. doi:10.​1523/​JNEUROSCI.​3190-12.​2012 PubMed
go back to reference Duque D, Malmierca MS, Caspary DM (2013) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anesthetized rat. J Physiol. doi: 10.1113/jphysiol.2013.261941 Duque D, Malmierca MS, Caspary DM (2013) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anesthetized rat. J Physiol. doi: 10.​1113/​jphysiol.​2013.​261941
go back to reference Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105(1):154–175PubMed Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105(1):154–175PubMed
go back to reference Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106(1):81–105PubMed Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106(1):81–105PubMed
go back to reference Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cognitive Neurosci 10(5):590–604 Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cognitive Neurosci 10(5):590–604
go back to reference Eytan D, Brenner N, Marom S (2003) Selective adaptation in networks of cortical neurons. J Neurosci 23(28):9349–9356PubMed Eytan D, Brenner N, Marom S (2003) Selective adaptation in networks of cortical neurons. J Neurosci 23(28):9349–9356PubMed
go back to reference Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49):16475–16484. doi:10.1523/JNEUROSCI.2793-10.2010 PubMed Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49):16475–16484. doi:10.​1523/​JNEUROSCI.​2793-10.​2010 PubMed
go back to reference Feliciano M, Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem 65(3):1348–1357PubMed Feliciano M, Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem 65(3):1348–1357PubMed
go back to reference Fischer C, Morlet D, Giard M (2000) Mismatch negativity and N100 in comatose patients. Audiol Neurootol 5(3–4):192–197PubMed Fischer C, Morlet D, Giard M (2000) Mismatch negativity and N100 in comatose patients. Audiol Neurootol 5(3–4):192–197PubMed
go back to reference Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34(1):1–25PubMed Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34(1):1–25PubMed
go back to reference Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265(1):138–142PubMed Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265(1):138–142PubMed
go back to reference Ghosh S, Murray GM, Turman AB, Rowe MJ (1994) Corticothalamic influences on transmission of tactile information in the ventroposterolateral thalamus of the cat: effect of reversible inactivation of somatosensory cortical areas I and II. Exp Brain Res 100(2):276–286PubMed Ghosh S, Murray GM, Turman AB, Rowe MJ (1994) Corticothalamic influences on transmission of tactile information in the ventroposterolateral thalamus of the cat: effect of reversible inactivation of somatosensory cortical areas I and II. Exp Brain Res 100(2):276–286PubMed
go back to reference He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. J Neurophysiol 77(2):896–908PubMed He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. J Neurophysiol 77(2):896–908PubMed
go back to reference He J, Yu YQ, Xiong Y, Hashikawa T, Chan YS (2002) Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig. J Neurophysiol 88(2):1040–1050PubMed He J, Yu YQ, Xiong Y, Hashikawa T, Chan YS (2002) Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig. J Neurophysiol 88(2):1040–1050PubMed
go back to reference Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. J Neurophysiol 83(5):2626–2638PubMed Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. J Neurophysiol 83(5):2626–2638PubMed
go back to reference Hu B, Senatorov V, Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol 479(Pt 2):217–231PubMedCentralPubMed Hu B, Senatorov V, Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol 479(Pt 2):217–231PubMedCentralPubMed
go back to reference Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport 16(1):81–84PubMed Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport 16(1):81–84PubMed
go back to reference Irvine DR, Huebner H (1979) Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J Neurophysiol 42(1 Pt 1):107–122PubMed Irvine DR, Huebner H (1979) Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J Neurophysiol 42(1 Pt 1):107–122PubMed
go back to reference Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143PubMed Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143PubMed
go back to reference Jahnsen H, Llinas R (1984) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122(1):73–82PubMed Jahnsen H, Llinas R (1984) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122(1):73–82PubMed
go back to reference Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG Jr (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83(1):87–90PubMed Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG Jr (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83(1):87–90PubMed
go back to reference Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res 667(2):192–200PubMed Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res 667(2):192–200PubMed
go back to reference Kane NM, Curry SH, Rowlands CA, Manara AR, Lewis T, Moss T, Cummins BH, Butler SR (1996) Event-related potentials—neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 22(1):39–46PubMed Kane NM, Curry SH, Rowlands CA, Manara AR, Lewis T, Moss T, Cummins BH, Butler SR (1996) Event-related potentials—neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 22(1):39–46PubMed
go back to reference Kimura A, Donishi T, Sakoda T, Hazama M, Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117(4):1003–1016PubMed Kimura A, Donishi T, Sakoda T, Hazama M, Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117(4):1003–1016PubMed
go back to reference Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480. doi:10.1002/cne.22805 PubMed Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480. doi:10.​1002/​cne.​22805 PubMed
go back to reference Komura Y, Tamura R, Uwano T, Nishijo H, Ono T (2005) Auditory thalamus integrates visual inputs into behavioral gains. Nat Neurosci 8(9):1203–1209. doi:10.1038/nn1528 PubMed Komura Y, Tamura R, Uwano T, Nishijo H, Ono T (2005) Auditory thalamus integrates visual inputs into behavioral gains. Nat Neurosci 8(9):1203–1209. doi:10.​1038/​nn1528 PubMed
go back to reference Kraus N, McGee T, Carrell T, King C, Littman T, Nicol T (1994a) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96(5 Pt 1):2758–2768PubMed Kraus N, McGee T, Carrell T, King C, Littman T, Nicol T (1994a) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96(5 Pt 1):2758–2768PubMed
go back to reference Kraus N, McGee T, Littman T, Nicol T, King C (1994b) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72(3):1270–1277PubMed Kraus N, McGee T, Littman T, Nicol T, King C (1994b) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72(3):1270–1277PubMed
go back to reference LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4(3):683–698PubMed LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4(3):683–698PubMed
go back to reference LeDoux JE, Ruggiero DA, Reis DJ (1985a) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242(2):182–213. doi:10.1002/cne.902420204 PubMed LeDoux JE, Ruggiero DA, Reis DJ (1985a) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242(2):182–213. doi:10.​1002/​cne.​902420204 PubMed
go back to reference LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1985b) Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann N Y Acad Sci 444:463–464PubMed LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1985b) Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann N Y Acad Sci 444:463–464PubMed
go back to reference Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264(1):123–146. doi:10.1002/cne.902640110 PubMed Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264(1):123–146. doi:10.​1002/​cne.​902640110 PubMed
go back to reference Llano DA, Sherman SM (2008) Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol 507(2):1209–1227. doi:10.1002/cne.21602 PubMed Llano DA, Sherman SM (2008) Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol 507(2):1209–1227. doi:10.​1002/​cne.​21602 PubMed
go back to reference Lomber SG, Payne BR, Horel JA (1999) The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J Neurosci Methods 86(2):179–194PubMed Lomber SG, Payne BR, Horel JA (1999) The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J Neurosci Methods 86(2):179–194PubMed
go back to reference Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Moore DR (ed) The Oxford handbook of auditory science: the auditory brain. OUP, New York, pp 9–41 Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Moore DR (ed) The Oxford handbook of auditory science: the auditory brain. OUP, New York, pp 9–41
go back to reference Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22(11):4625–4638PubMed Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22(11):4625–4638PubMed
go back to reference May P, Tiitinen H (2001) Human cortical processing of auditory events over time. NeuroReport 12(3):573–577PubMed May P, Tiitinen H (2001) Human cortical processing of auditory events over time. NeuroReport 12(3):573–577PubMed
go back to reference Moore DR (1993) Plasticity of binaural hearing and some possible mechanisms following late-onset deprivation. J Am Acad Audiol 4(5):277–283 (discussion 283–274)PubMed Moore DR (1993) Plasticity of binaural hearing and some possible mechanisms following late-onset deprivation. J Am Acad Audiol 4(5):277–283 (discussion 283–274)PubMed
go back to reference Moriizumi T, Hattori T (1991) Pyramidal cells in rat temporoauditory cortex project to both striatum and inferior colliculus. Brain Res Bull 27(1):141–144PubMed Moriizumi T, Hattori T (1991) Pyramidal cells in rat temporoauditory cortex project to both striatum and inferior colliculus. Brain Res Bull 27(1):141–144PubMed
go back to reference Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285(5432):1405–1408PubMed Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285(5432):1405–1408PubMed
go back to reference Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329 Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329
go back to reference Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M (1987) The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl 40:125–131PubMed Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M (1987) The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl 40:125–131PubMed
go back to reference Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4(5):503–506PubMed Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4(5):503–506PubMed
go back to reference Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21(3–4):214–223 Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21(3–4):214–223
go back to reference Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4(6):646–663PubMed Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4(6):646–663PubMed
go back to reference Ojima H, Rouiller EM (2011) Auditory cortical projections to the medial geniculate body. In: J.A. Winer CES (ed) The auditory cortex. Springer, New York, p 171–188 Ojima H, Rouiller EM (2011) Auditory cortical projections to the medial geniculate body. In: J.A. Winer CES (ed) The auditory cortex. Springer, New York, p 171–188
go back to reference Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42(3–4):475–482PubMed Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42(3–4):475–482PubMed
go back to reference Paavilainen P, Jiang D, Lavikainen J, Näätänen R (1993) Stimulus duration and the sensory memory trace: an event-related potential study. Biol Psychol 35(2):139–152PubMed Paavilainen P, Jiang D, Lavikainen J, Näätänen R (1993) Stimulus duration and the sensory memory trace: an event-related potential study. Biol Psychol 35(2):139–152PubMed
go back to reference Patel CR, Redhead C, Cervi AL, Zhang H (2012) Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hear Res 286(1–2):41–54. doi:10.1016/j.heares.2012.02.007 PubMed Patel CR, Redhead C, Cervi AL, Zhang H (2012) Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hear Res 286(1–2):41–54. doi:10.​1016/​j.​heares.​2012.​02.​007 PubMed
go back to reference Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777PubMed Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777PubMed
go back to reference Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2001) Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol 112(5):778–784PubMed Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2001) Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol 112(5):778–784PubMed
go back to reference Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol 97(5):3621–3638. doi:10.1152/jn.01298.2006 PubMed Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol 97(5):3621–3638. doi:10.​1152/​jn.​01298.​2006 PubMed
go back to reference Ponnath A, Hoke KL, Farris HE (2013) Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A 199(4):295–313. doi:10.1007/s00359-013-0794-x Ponnath A, Hoke KL, Farris HE (2013) Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A 199(4):295–313. doi:10.​1007/​s00359-013-0794-x
go back to reference Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.1093/cercor/bhs295 PubMed Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.​1093/​cercor/​bhs295 PubMed
go back to reference Rose D, Blakemore C (1974) Effects of bicuculline on functions of inhibition in visual cortex. Nature 249(455):375–377PubMed Rose D, Blakemore C (1974) Effects of bicuculline on functions of inhibition in visual cortex. Nature 249(455):375–377PubMed
go back to reference Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53(6):727–741PubMed Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53(6):727–741PubMed
go back to reference Rushmore RJ, Payne BR, Lomber SG (2005) Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain. J Comp Neurol 488(4):414–426. doi:10.1002/cne.20597 PubMed Rushmore RJ, Payne BR, Lomber SG (2005) Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain. J Comp Neurol 488(4):414–426. doi:10.​1002/​cne.​20597 PubMed
go back to reference Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51(2):377–391PubMed Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51(2):377–391PubMed
go back to reference Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol 22(3):275–301PubMed Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol 22(3):275–301PubMed
go back to reference Sambeth A, Pakarinen S, Ruohio K, Fellman V, van Zuijen TL, Huotilainen M (2009) Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography. Clin Neurophysiol 120(3):530–538. doi:10.1016/j.clinph.2008.12.033 PubMed Sambeth A, Pakarinen S, Ruohio K, Fellman V, van Zuijen TL, Huotilainen M (2009) Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography. Clin Neurophysiol 120(3):530–538. doi:10.​1016/​j.​clinph.​2008.​12.​033 PubMed
go back to reference Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448PubMed Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448PubMed
go back to reference Sanchez-Vives MV, Nowak LG, McCormick DA (2000a) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20(11):4286–4299PubMed Sanchez-Vives MV, Nowak LG, McCormick DA (2000a) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20(11):4286–4299PubMed
go back to reference Sanchez-Vives MV, Nowak LG, McCormick DA (2000b) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20(11):4267–4285PubMed Sanchez-Vives MV, Nowak LG, McCormick DA (2000b) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20(11):4267–4285PubMed
go back to reference Schreiner CE, Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. J Neurophysiol 51(6):1284–1305PubMed Schreiner CE, Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. J Neurophysiol 51(6):1284–1305PubMed
go back to reference Sherman SM (2001a) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24(2):122–126PubMed Sherman SM (2001a) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24(2):122–126PubMed
go back to reference Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76(3):1367–1395PubMed Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76(3):1367–1395PubMed
go back to reference Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B 357(1428):1695–1708. doi:10.1098/rstb2002.1161 Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B 357(1428):1695–1708. doi:10.​1098/​rstb2002.​1161
go back to reference Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369(6480):479–482. doi:10.1038/369479a0 PubMed Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369(6480):479–482. doi:10.​1038/​369479a0 PubMed
go back to reference Smith PH, Bartlett EL, Kowalkowski A (2006) Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Comp Neurol 496(3):314–334. doi:10.1002/cne.20913 PubMedCentralPubMed Smith PH, Bartlett EL, Kowalkowski A (2006) Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Comp Neurol 496(3):314–334. doi:10.​1002/​cne.​20913 PubMedCentralPubMed
go back to reference Smith PH, Uhlrich DJ, Manning KA, Banks MI (2012) Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. J Comp Neurol 520(1):34–51. doi:10.1002/cne.22682 PubMedCentralPubMed Smith PH, Uhlrich DJ, Manning KA, Banks MI (2012) Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. J Comp Neurol 520(1):34–51. doi:10.​1002/​cne.​22682 PubMedCentralPubMed
go back to reference Sun X, Xia Q, Lai CH, Shum DK, Chan YS, He J (2007) Corticofugal modulation of acoustically induced fos expression in the rat auditory pathway. J Comp Neurol 501(4):509–525. doi:10.1002/cne.21249 PubMed Sun X, Xia Q, Lai CH, Shum DK, Chan YS, He J (2007) Corticofugal modulation of acoustically induced fos expression in the rat auditory pathway. J Comp Neurol 501(4):509–525. doi:10.​1002/​cne.​21249 PubMed
go back to reference Szymanski FD, Garcia-Lazaro JA, Schnupp JW (2009) Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102(3):1483–1490. doi:10.1152/jn.00240.2009 PubMed Szymanski FD, Garcia-Lazaro JA, Schnupp JW (2009) Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102(3):1483–1490. doi:10.​1152/​jn.​00240.​2009 PubMed
go back to reference Thomas JM, Morse C, Kishline L, O’Brien-Lambert A, Simonton A, Miller KE, Covey E (2012) Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res 291(1–2):34–40. doi:10.1016/j.heares.2012.06.004 PubMed Thomas JM, Morse C, Kishline L, O’Brien-Lambert A, Simonton A, Miller KE, Covey E (2012) Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res 291(1–2):34–40. doi:10.​1016/​j.​heares.​2012.​06.​004 PubMed
go back to reference van Zuijen TL, Simoens VL, Paavilainen P, Näätänen R, Tervaniemi M (2006) Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: an event-related brain potential study. J Cognitive Neurosci 18(8):1292–1303. doi:10.1162/jocn.2006.18.8.1292 van Zuijen TL, Simoens VL, Paavilainen P, Näätänen R, Tervaniemi M (2006) Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: an event-related brain potential study. J Cognitive Neurosci 18(8):1292–1303. doi:10.​1162/​jocn.​2006.​18.​8.​1292
go back to reference Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17(20):7926–7940PubMed Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17(20):7926–7940PubMed
go back to reference Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86(3):506–517PubMed Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86(3):506–517PubMed
go back to reference Villa AE, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86(2):161–178PubMed Villa AE, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86(2):161–178PubMed
go back to reference Virtala P, Berg V, Kivioja M, Purhonen J, Salmenkivi M, Paavilainen P, Tervaniemi M (2011) The preattentive processing of major vs. minor chords in the human brain: an event-related potential study. Neurosci Lett 487(3):406–410. doi:10.1016/j.neulet.2010.10.066 PubMed Virtala P, Berg V, Kivioja M, Purhonen J, Salmenkivi M, Paavilainen P, Tervaniemi M (2011) The preattentive processing of major vs. minor chords in the human brain: an event-related potential study. Neurosci Lett 487(3):406–410. doi:10.​1016/​j.​neulet.​2010.​10.​066 PubMed
go back to reference Watanabe T, Yanagisawa K, Kanzaki J, Katsuki Y (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp Brain Res 2(4):302–317PubMed Watanabe T, Yanagisawa K, Kanzaki J, Katsuki Y (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp Brain Res 2(4):302–317PubMed
go back to reference Weedman DL, Ryugo DK (1996) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706(1):97–102PubMed Weedman DL, Ryugo DK (1996) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706(1):97–102PubMed
go back to reference Weinberger NM, Bakin JS (1998) Research on auditory cortex plasticity. Science 280(5367):1174PubMed Weinberger NM, Bakin JS (1998) Research on auditory cortex plasticity. Science 280(5367):1174PubMed
go back to reference Weinberger NM, Javid R, Lepan B (1995) Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs. Behav Neurosci 109(1):10–17PubMed Weinberger NM, Javid R, Lepan B (1995) Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs. Behav Neurosci 109(1):10–17PubMed
go back to reference Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346(2):207–236. doi:10.1002/cne.903460204 PubMed Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346(2):207–236. doi:10.​1002/​cne.​903460204 PubMed
go back to reference Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15(3):299–318PubMed Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15(3):299–318PubMed
go back to reference Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212(1–2):1–8PubMed Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212(1–2):1–8PubMed
go back to reference Winer JA, Morest DK (1983a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3(12):2629–2651PubMed Winer JA, Morest DK (1983a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3(12):2629–2651PubMed
go back to reference Winer JA, Morest DK (1983b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. J Comp Neurol 221(1):1–30. doi:10.1002/cne.902210102 PubMed Winer JA, Morest DK (1983b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. J Comp Neurol 221(1):1–30. doi:10.​1002/​cne.​902210102 PubMed
go back to reference Winer JA, Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol 434(4):379–412PubMed Winer JA, Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol 434(4):379–412PubMed
go back to reference Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci USA 93(15):8005–8010PubMedCentralPubMed Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci USA 93(15):8005–8010PubMedCentralPubMed
go back to reference Winer JA, Kelly JB, Larue DT (1999) Neural architecture of the rat medial geniculate body. Hear Res 130(1–2):19–41PubMed Winer JA, Kelly JB, Larue DT (1999) Neural architecture of the rat medial geniculate body. Hear Res 130(1–2):19–41PubMed
go back to reference Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J (2008) Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. J Neurophysiol 99(6):2938–2945. doi:10.1152/jn.00002.2008 PubMed Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J (2008) Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. J Neurophysiol 99(6):2938–2945. doi:10.​1152/​jn.​00002.​2008 PubMed
Metadata
Title
An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus
Authors
Flora M. Antunes
Manuel S. Malmierca
Publication date
01-07-2014
Publisher
Springer US
Published in
Brain Topography / Issue 4/2014
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-013-0342-6

Other articles of this Issue 4/2014

Brain Topography 4/2014 Go to the issue