Skip to main content
Top
Published in: Brain Topography 3/2015

01-05-2015 | Original Paper

Hierarchical Neural Encoding of Temporal Regularity in the Human Auditory Cortex

Authors: Sumru Keceli, Hidehiko Okamoto, Ryusuke Kakigi

Published in: Brain Topography | Issue 3/2015

Login to get access

Abstract

Temporal regularity provides an important cue for the identification of natural sounds. Here, we measured auditory evoked cortical magnetic fields to investigate the neural processing of temporal regularity that cannot be tonotopically represented in the auditory periphery. Auditory steady state responses (ASSR) and sustained fields (SF) elicited by 40 Hz amplitude modulated periodic and non-periodic noises were analyzed. Periodic noises of 40-, 20-, and 5-Hz were prepared in the form of repeating frozen noises where the same noise segment appears at either each period (40 Hz), every second period (20 Hz), or every eighth period (5 Hz) of amplitude modulation. Compared to non-periodic white noises, periodic noises with repetition rates of 5-, 20-, and 40-Hz caused significantly increased SF amplitudes in both hemispheres. ASSR amplitudes were significantly enhanced for 20- and 40-Hz periodic noises in the right hemisphere while no enhancement was observed for periodic noises in the left hemisphere. The observed variation of the regularity effect between evoked response components and hemispheres may reflect the differences in the temporal integration window lengths adopted between ASSR and SF generators and also between the right and left auditory pathways.
Appendix
Available only for authorised users
Literature
go back to reference Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258(1):9–12CrossRefPubMed Alho K, Connolly JF, Cheour M, Lehtokoski A, Huotilainen M, Virtanen J, Aulanko R, Ilmoniemi RJ (1998) Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett 258(1):9–12CrossRefPubMed
go back to reference Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540CrossRefPubMed Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure MC, Samson Y (1998) Lateralization of speech and auditory temporal processing. J Cogn Neurosci 10(4):536–540CrossRefPubMed
go back to reference Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732CrossRefPubMed Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106(5):2719–2732CrossRefPubMed
go back to reference Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118(2):887–906CrossRefPubMed Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118(2):887–906CrossRefPubMed
go back to reference Dau T, Puschel D, Kohlrausch A (1996) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99(6):3615–3622CrossRefPubMed Dau T, Puschel D, Kohlrausch A (1996) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99(6):3615–3622CrossRefPubMed
go back to reference Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am 102(5 Pt 1):2906–2919CrossRefPubMed Dau T, Kollmeier B, Kohlrausch A (1997) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am 102(5 Pt 1):2906–2919CrossRefPubMed
go back to reference De Boer E (1985) Auditory time constants: a paradox. Time resolution in auditory systems. Springer, Berlin, pp 141–158CrossRef De Boer E (1985) Auditory time constants: a paradox. Time resolution in auditory systems. Springer, Berlin, pp 141–158CrossRef
go back to reference Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95(5 Pt 1):2670–2680CrossRefPubMed Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95(5 Pt 1):2670–2680CrossRefPubMed
go back to reference Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95(2):1053–1064CrossRefPubMed Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95(2):1053–1064CrossRefPubMed
go back to reference Engelien A, Schulz M, Ross B, Arolt V, Pantev C (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148(1–2):153–160CrossRefPubMed Engelien A, Schulz M, Ross B, Arolt V, Pantev C (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148(1–2):153–160CrossRefPubMed
go back to reference Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15(4):2748–2755PubMed Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15(4):2748–2755PubMed
go back to reference Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637. doi:10.1038/88459 CrossRefPubMed Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637. doi:10.​1038/​88459 CrossRefPubMed
go back to reference Gunji A, Koyama S, Ishii R, Levy D, Okamoto H, Kakigi R, Pantev C (2003) Magnetoencephalographic study of the cortical activity elicited by human voice. Neurosci Lett 348(1):13–16CrossRefPubMed Gunji A, Koyama S, Ishii R, Levy D, Okamoto H, Kakigi R, Pantev C (2003) Magnetoencephalographic study of the cortical activity elicited by human voice. Neurosci Lett 348(1):13–16CrossRefPubMed
go back to reference Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15(1):207–216. doi:10.1006/nimg.2001.0949 CrossRefPubMed Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15(1):207–216. doi:10.​1006/​nimg.​2001.​0949 CrossRefPubMed
go back to reference Hari R, Hamalainen M, Joutsiniemi SL (1989a) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039CrossRefPubMed Hari R, Hamalainen M, Joutsiniemi SL (1989a) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039CrossRefPubMed
go back to reference Hari R, Hamalainen M, Kaukoranta E, Makela J, Joutsiniemi SL, Tiihonen J (1989b) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74(3):463–470CrossRefPubMed Hari R, Hamalainen M, Kaukoranta E, Makela J, Joutsiniemi SL, Tiihonen J (1989b) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74(3):463–470CrossRefPubMed
go back to reference Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70
go back to reference John MS, Dimitrijevic A, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6(1):12–27CrossRefPubMed John MS, Dimitrijevic A, van Roon P, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6(1):12–27CrossRefPubMed
go back to reference Makela JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66(6):539–546CrossRefPubMed Makela JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66(6):539–546CrossRefPubMed
go back to reference Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, Boston Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, Boston
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
go back to reference Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90(1):82–90CrossRefPubMed Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90(1):82–90CrossRefPubMed
go back to reference Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101(1–2):62–74CrossRefPubMed Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101(1–2):62–74CrossRefPubMed
go back to reference Patterson R (2000) Auditory images: how complex sounds are represented in the auditory system. Acoust Sci Technol 21(4):183–190 Patterson R (2000) Auditory images: how complex sounds are represented in the auditory system. Acoust Sci Technol 21(4):183–190
go back to reference Patterson RD, Allerhand MH, Giguere C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98(4):1890–1894CrossRefPubMed Patterson RD, Allerhand MH, Giguere C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98(4):1890–1894CrossRefPubMed
go back to reference Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. II. Stimulus relationships. Electroencephalogr Clin Neurophysiol 45(2):198–210CrossRefPubMed Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. II. Stimulus relationships. Electroencephalogr Clin Neurophysiol 45(2):198–210CrossRefPubMed
go back to reference Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82(1):165–178CrossRefPubMed Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82(1):165–178CrossRefPubMed
go back to reference Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41(1):245–255CrossRef Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun 41(1):245–255CrossRef
go back to reference Ross B, Pantev C (2004) Auditory steady-state responses reveal amplitude modulation gap detection thresholds. J Acoust Soc Am 115(5 Pt 1):2193–2206CrossRefPubMed Ross B, Pantev C (2004) Auditory steady-state responses reveal amplitude modulation gap detection thresholds. J Acoust Soc Am 115(5 Pt 1):2193–2206CrossRefPubMed
go back to reference Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C (2000) A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 108(2):679–691CrossRefPubMed Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C (2000) A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 108(2):679–691CrossRefPubMed
go back to reference Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165(1–2):68–84CrossRefPubMed Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165(1–2):68–84CrossRefPubMed
go back to reference Supin A, Popov VV, Milekhina ON, Tarakanov MB (1999) Ripple depth and density resolution of rippled noise. J Acoust Soc Am 106(5):2800–2804CrossRefPubMed Supin A, Popov VV, Milekhina ON, Tarakanov MB (1999) Ripple depth and density resolution of rippled noise. J Acoust Soc Am 106(5):2800–2804CrossRefPubMed
go back to reference Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453. doi:10.3171/jns.2001.94.3.0445 CrossRefPubMed Szymanski MD, Perry DW, Gage NM, Rowley HA, Walker J, Berger MS, Roberts TP (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453. doi:10.​3171/​jns.​2001.​94.​3.​0445 CrossRefPubMed
go back to reference Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47CrossRefPubMed Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47CrossRefPubMed
go back to reference Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 95(3):189–200CrossRefPubMed Tesche CD, Uusitalo MA, Ilmoniemi RJ, Huotilainen M, Kajola M, Salonen O (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr Clin Neurophysiol 95(3):189–200CrossRefPubMed
go back to reference Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90(2 Pt 1):858–865CrossRefPubMed Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90(2 Pt 1):858–865CrossRefPubMed
go back to reference Wang KS, Shamma S (1994) Self-normalization and noise-robustness in early auditory representations. IEEE Trans Speech Audio Process 2(3):421–435CrossRef Wang KS, Shamma S (1994) Self-normalization and noise-robustness in early auditory representations. IEEE Trans Speech Audio Process 2(3):421–435CrossRef
go back to reference Warren RM (2008) Auditory perception: an analysis and synthesis, 3rd edn. Cambridge University Press, CambridgeCrossRef Warren RM (2008) Auditory perception: an analysis and synthesis, 3rd edn. Cambridge University Press, CambridgeCrossRef
go back to reference Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953CrossRefPubMed Zatorre RJ, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953CrossRefPubMed
go back to reference Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908–1919PubMed Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908–1919PubMed
go back to reference Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46CrossRefPubMed Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46CrossRefPubMed
Metadata
Title
Hierarchical Neural Encoding of Temporal Regularity in the Human Auditory Cortex
Authors
Sumru Keceli
Hidehiko Okamoto
Ryusuke Kakigi
Publication date
01-05-2015
Publisher
Springer US
Published in
Brain Topography / Issue 3/2015
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-013-0300-3

Other articles of this Issue 3/2015

Brain Topography 3/2015 Go to the issue