Skip to main content
Top
Published in: Japanese Journal of Ophthalmology 5/2015

01-09-2015 | Laboratory Investigation

Functional and morphological study of retinal photoreceptor cell degeneration in transgenic rabbits with a Pro347Leu rhodopsin mutation

Authors: Ken Asakawa, Hitoshi Ishikawa, Shigekazu Uga, Kimiyo Mashimo, Kimiya Shimizu, Mineo Kondo, Hiroko Terasaki

Published in: Japanese Journal of Ophthalmology | Issue 5/2015

Login to get access

Abstract

Purpose

To investigate the process of retinal degeneration by analyzing the functional and morphological findings in transgenic rabbits with a Pro347Leu rhodopsin mutation.

Methods

Wild-type (WT) and transgenic (Tg) rabbits at ages 4, 8 and 12 months were used. We conducted functional evaluation by recording the changes in the pupil response to red and blue light stimulation and the amplitude of the electroretinography (ERG). Morphologically, rod and cone distribution was examined using light and electron microscopy. Immunostaining for the identification of retinal ganglion cells (RGCs) was also confirmed by injecting a TUJ-1 monoclonal antibody.

Results

Pupil constriction for infrared pupillography and the a- and b-waves for ERG in Tg rabbits decreased with increasing age; the differences were compared to the age-matched WT rabbits. The subnormal ERG in the Tg rabbits, especially the a-wave decrease and pupil constriction with a long latency time, was induced only during exposure to blue light stimulation at 12 months. Light and electron microscopic findings showed a progressive loss of photoreceptor cells over time manifesting by 8 months in the peripheral retina. Moreover, pyknotic nuclei of the outer nuclear layer in the center of the visual streak were observed. At 12 months, there was disappearance of the rods and ballooning degeneration of the cones. Some remaining RGCs had large cell bodies with long branching dendrites.

Conclusions

The changes in the pupil light response and amplitude of the ERG could be used to predict the state of retinal degeneration in the Tg rabbit.
Literature
2.
go back to reference Berson EL. Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci. 1993;34:1659–76.PubMed Berson EL. Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci. 1993;34:1659–76.PubMed
3.
go back to reference Li T, Snyder WK, Olsson JE, Dryja TP. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA. 1996;93:14176–81.CrossRefPubMedCentralPubMed Li T, Snyder WK, Olsson JE, Dryja TP. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA. 1996;93:14176–81.CrossRefPubMedCentralPubMed
4.
go back to reference Kraft TW, Allen D, Petters RM, Hao Y, Peng YW, Wong F. Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis. 2005;11:1246–56.PubMed Kraft TW, Allen D, Petters RM, Hao Y, Peng YW, Wong F. Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis. 2005;11:1246–56.PubMed
5.
go back to reference Roof DJ, Adamian M, Hayes A. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci. 1994;35:4049–62.PubMed Roof DJ, Adamian M, Hayes A. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci. 1994;35:4049–62.PubMed
6.
go back to reference Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, et al. Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci. 2009;50:1371–7.CrossRefPubMed Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, et al. Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci. 2009;50:1371–7.CrossRefPubMed
7.
go back to reference Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Dryja TP. Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. Am J Ophthalmol. 1991;111:614–23.CrossRefPubMed Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Dryja TP. Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. Am J Ophthalmol. 1991;111:614–23.CrossRefPubMed
8.
go back to reference Peng YW, Hao Y, Petters RM, Wong F. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci. 2000;3:1121–7.CrossRefPubMed Peng YW, Hao Y, Petters RM, Wong F. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci. 2000;3:1121–7.CrossRefPubMed
9.
go back to reference Sakai T, Kondo M, Ueno S, Koyasu T, Komeima K, Terasaki H. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration. Invest Ophthalmol Vis Sci. 2009;50:4402–9.CrossRefPubMed Sakai T, Kondo M, Ueno S, Koyasu T, Komeima K, Terasaki H. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration. Invest Ophthalmol Vis Sci. 2009;50:4402–9.CrossRefPubMed
10.
go back to reference Yokoyama D, Machida S, Kondo M, Terasaki H, Nishimura T, Kurosaka D. Pharmacological dissection of multifocal electroretinograms of rabbits with Pro347Leu rhodopsin mutation. Jpn J Ophthalmol. 2010;54:458–66.CrossRefPubMed Yokoyama D, Machida S, Kondo M, Terasaki H, Nishimura T, Kurosaka D. Pharmacological dissection of multifocal electroretinograms of rabbits with Pro347Leu rhodopsin mutation. Jpn J Ophthalmol. 2010;54:458–66.CrossRefPubMed
11.
go back to reference Nishimura T, Machida S, Kondo M, Terasaki H, Yokoyama D, Kurosaka D. Enhancement of ON bipolar cell responses of cone electroretinograms in rabbits with Pro347Leu rhodopsin mutation. Invest Ophthalmol Vis Sci. 2011;52:7610–7.CrossRefPubMed Nishimura T, Machida S, Kondo M, Terasaki H, Yokoyama D, Kurosaka D. Enhancement of ON bipolar cell responses of cone electroretinograms in rabbits with Pro347Leu rhodopsin mutation. Invest Ophthalmol Vis Sci. 2011;52:7610–7.CrossRefPubMed
12.
go back to reference Hirota R, Kondo M, Ueno S, Sakai T, Koyasu T, Terasaki H. Photoreceptor and post-photoreceptoral contributions to photopic ERG a-wave in rhodopsin P347L transgenic rabbits. Invest Ophthalmol Vis Sci. 2012;53:1467–72.CrossRefPubMed Hirota R, Kondo M, Ueno S, Sakai T, Koyasu T, Terasaki H. Photoreceptor and post-photoreceptoral contributions to photopic ERG a-wave in rhodopsin P347L transgenic rabbits. Invest Ophthalmol Vis Sci. 2012;53:1467–72.CrossRefPubMed
13.
go back to reference Morimoto T, Kanda H, Kondo M, Terasaki H, Nishida K, Fujikado T. Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. Invest Ophthalmol Vis Sci. 2012;53:4254–61.CrossRefPubMed Morimoto T, Kanda H, Kondo M, Terasaki H, Nishida K, Fujikado T. Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. Invest Ophthalmol Vis Sci. 2012;53:4254–61.CrossRefPubMed
14.
go back to reference Ueno S, Koyasu T, Kominami T, Sakai T, Kondo M, Yasuda S, et al. Focal cone ERGs of rhodopsin Pro347Leu transgenic rabbits. Vision Res. 2013;91:118–23.CrossRefPubMed Ueno S, Koyasu T, Kominami T, Sakai T, Kondo M, Yasuda S, et al. Focal cone ERGs of rhodopsin Pro347Leu transgenic rabbits. Vision Res. 2013;91:118–23.CrossRefPubMed
15.
go back to reference Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, Anderson J, et al. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J Comp Neurol. 2011;519:2713–33.CrossRefPubMedCentralPubMed Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, Anderson J, et al. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J Comp Neurol. 2011;519:2713–33.CrossRefPubMedCentralPubMed
16.
go back to reference Muraoka Y, Ikeda HO, Nakano N, Hangai M, Toda Y, Okamoto-Furuta K, et al. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One. 2012;7:e36135.CrossRefPubMedCentralPubMed Muraoka Y, Ikeda HO, Nakano N, Hangai M, Toda Y, Okamoto-Furuta K, et al. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One. 2012;7:e36135.CrossRefPubMedCentralPubMed
17.
go back to reference Ishikawa H, Onodera A, Asakawa K, Nakadomari S, Shimizu K. Effects of selective-wavelength block filters on pupillary light reflex under red and blue light stimuli. Jpn J Ophthalmol. 2012;56:181–6.CrossRefPubMed Ishikawa H, Onodera A, Asakawa K, Nakadomari S, Shimizu K. Effects of selective-wavelength block filters on pupillary light reflex under red and blue light stimuli. Jpn J Ophthalmol. 2012;56:181–6.CrossRefPubMed
18.
go back to reference Reynodls ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12.CrossRef Reynodls ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208–12.CrossRef
19.
go back to reference Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001;128:2497–508.PubMedCentralPubMed Brown NL, Patel S, Brzezinski J, Glaser T. Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001;128:2497–508.PubMedCentralPubMed
20.
go back to reference Famiglietti EV, Sharpe SJ. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis Neurosci. 1995;12:1151–75.CrossRefPubMed Famiglietti EV, Sharpe SJ. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis Neurosci. 1995;12:1151–75.CrossRefPubMed
22.
go back to reference Dodt E, Elenius V. Change of threshold during dark adaptation measured with orange and blue light in cats and rabbits. Experientia. 1960;16:313–4.CrossRefPubMed Dodt E, Elenius V. Change of threshold during dark adaptation measured with orange and blue light in cats and rabbits. Experientia. 1960;16:313–4.CrossRefPubMed
24.
go back to reference Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.PubMed Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.PubMed
25.
go back to reference Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4:621–6.CrossRefPubMed Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4:621–6.CrossRefPubMed
26.
go back to reference Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, International Society for Clinical Electrophysiology of Vision. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118:69–77.CrossRefPubMed Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, International Society for Clinical Electrophysiology of Vision. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118:69–77.CrossRefPubMed
27.
go back to reference Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, et al. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 2000;41:3200–9.PubMed Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, et al. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 2000;41:3200–9.PubMed
29.
30.
go back to reference Stone JL, Barlow WE, Humayun MS. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110:1634–9.CrossRefPubMed Stone JL, Barlow WE, Humayun MS. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110:1634–9.CrossRefPubMed
31.
go back to reference Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS, et al. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. 2006;142:945–52.CrossRefPubMedCentralPubMed Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS, et al. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. 2006;142:945–52.CrossRefPubMedCentralPubMed
32.
go back to reference Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, et al. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci. 2007;48:3364–71.CrossRefPubMedCentralPubMed Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, et al. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci. 2007;48:3364–71.CrossRefPubMedCentralPubMed
33.
go back to reference Juliusson B, Bergström A, Röhlich P, Ehinger B, van Veen T, Szél A. Complementary cone fields of the rabbit retina. Invest Ophthalmol Vis Sci. 1994;35:811–8.PubMed Juliusson B, Bergström A, Röhlich P, Ehinger B, van Veen T, Szél A. Complementary cone fields of the rabbit retina. Invest Ophthalmol Vis Sci. 1994;35:811–8.PubMed
34.
go back to reference Tan E, Wang Q, Quiambao AB, Xu X, Qtaishat NM, Peachey NS, et al. The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2001;42:589–600.PubMed Tan E, Wang Q, Quiambao AB, Xu X, Qtaishat NM, Peachey NS, et al. The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2001;42:589–600.PubMed
35.
go back to reference Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science. 1995;267:374–7.CrossRefPubMed Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science. 1995;267:374–7.CrossRefPubMed
36.
go back to reference Alfinito PD, Townes-Anderson E. Activation of mislocalized opsin kills rod cells: a novel mechanism for rod cell death in retinal disease. Proc Natl Acad Sci USA. 2002;99:5655–60.CrossRefPubMedCentralPubMed Alfinito PD, Townes-Anderson E. Activation of mislocalized opsin kills rod cells: a novel mechanism for rod cell death in retinal disease. Proc Natl Acad Sci USA. 2002;99:5655–60.CrossRefPubMedCentralPubMed
37.
go back to reference Fukuda Y, Hsiao CF, Watanabe M. Morphological correlates of Y, X and W type ganglion cells in the cat’s retina. Vision Res. 1985;25:319–27.CrossRefPubMed Fukuda Y, Hsiao CF, Watanabe M. Morphological correlates of Y, X and W type ganglion cells in the cat’s retina. Vision Res. 1985;25:319–27.CrossRefPubMed
38.
go back to reference Wässle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev. 1991;71:447–80.PubMed Wässle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev. 1991;71:447–80.PubMed
39.
go back to reference Perry VH, Cowey A. The effects of unilateral cortical and tectal lesions on retinal ganglion cells in rats. Exp Brain Res. 1979;35:85–95.PubMed Perry VH, Cowey A. The effects of unilateral cortical and tectal lesions on retinal ganglion cells in rats. Exp Brain Res. 1979;35:85–95.PubMed
Metadata
Title
Functional and morphological study of retinal photoreceptor cell degeneration in transgenic rabbits with a Pro347Leu rhodopsin mutation
Authors
Ken Asakawa
Hitoshi Ishikawa
Shigekazu Uga
Kimiyo Mashimo
Kimiya Shimizu
Mineo Kondo
Hiroko Terasaki
Publication date
01-09-2015
Publisher
Springer Japan
Published in
Japanese Journal of Ophthalmology / Issue 5/2015
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-015-0400-6

Other articles of this Issue 5/2015

Japanese Journal of Ophthalmology 5/2015 Go to the issue