Skip to main content
Top
Published in: European Surgery 3/2022

Open Access 21-04-2022 | Skin Graft | main topic

Skin regeneration, repair, and reconstruction: present and future

Authors: Lars-Peter Kamolz, M.D. Ph.D. M.Sc., Petra Kotzbeck, Michael Schintler, Stephan Spendel

Published in: European Surgery | Issue 3/2022

Login to get access

Summary

Background

Large skin defects caused by trauma (e.g., burns) or due to other reasons (e.g., tumor-related skin resections) require sufficient skin replacement. The constant improvement of innovative methods of skin replacement and skin expansion mean that even burn victims with more than 80% body surface burned have a realistic chance of survival. Due to these new developments, not only has survival rate increased, but also quality of life has increased tremendously over the past decades.

Methods

The aim of this review is to present an overview of current standards and future trends concerning the treatment of skin defects. The main focus is placed on the most important technologies and future trends.

Results

Autologous skin grafting was developed more than 3500 years ago. Several approaches and techniques have been discovered and established in burn care and plastic surgery since then. Great achievements were made during the 19th and 20th centuries. Many of these old and new techniques are still part of modern burn and plastic surgery. Today, autologous skin grafting is still considered to be the gold standard for many wounds, but new technologies have been developed, ranging from biological to synthetic skin replacement materials.

Conclusion

Today, old and new technologies are available which allow us new treatment concepts. All this has led to the reconstructive clockwork for reconstructive surgery of the 21st century.
Literature
1.
go back to reference Knobloch K, Vogt PM. The reconstructive clockwork of the twenty-first century: an extension of the concept of the reconstructive ladder and reconstructive elevator. Plast Reconstr Surg. 2010;126(4):220e–2e.PubMedCrossRef Knobloch K, Vogt PM. The reconstructive clockwork of the twenty-first century: an extension of the concept of the reconstructive ladder and reconstructive elevator. Plast Reconstr Surg. 2010;126(4):220e–2e.PubMedCrossRef
2.
go back to reference Horch RE, Kopp J. Haut und Hautersatz, Tissue Engineering. In: Kamolz LP, Herndon DN, Jeschke MG, editors. Verbrennungen – Diagnose, Therapie und Rehabilitation des thermischen Traumas. 1st ed. Vienna: Springer; 2009. p. 123–143 Horch RE, Kopp J. Haut und Hautersatz, Tissue Engineering. In: Kamolz LP, Herndon DN, Jeschke MG, editors. Verbrennungen – Diagnose, Therapie und Rehabilitation des thermischen Traumas. 1st ed. Vienna: Springer; 2009. p. 123–143
3.
go back to reference Kohlhauser M, Luze H, Nischwitz SP, Kamolz LP. Historical evolution of skin grafting—a journey through time. Medicina (Kaunas). 2021;57(4):348.CrossRef Kohlhauser M, Luze H, Nischwitz SP, Kamolz LP. Historical evolution of skin grafting—a journey through time. Medicina (Kaunas). 2021;57(4):348.CrossRef
4.
go back to reference Beier JP, Boos AM, Kamolz L, Vogt PM, Koller R, Horch RE. Skin tissue engineering—from split skin to engineered skin grafts? Handchir Mikrochir Plast Chir. 2010;42(6):342–53.PubMedCrossRef Beier JP, Boos AM, Kamolz L, Vogt PM, Koller R, Horch RE. Skin tissue engineering—from split skin to engineered skin grafts? Handchir Mikrochir Plast Chir. 2010;42(6):342–53.PubMedCrossRef
5.
go back to reference Haslik W, Kamolz LP, Nathschläger G, Andel H, Meissl G, Frey M. First experiences with the collagen-elastin matrix matriderm as a dermal substitute in severe burn injuries of the hand. Burns. 2007;33(3):364–8.PubMedCrossRef Haslik W, Kamolz LP, Nathschläger G, Andel H, Meissl G, Frey M. First experiences with the collagen-elastin matrix matriderm as a dermal substitute in severe burn injuries of the hand. Burns. 2007;33(3):364–8.PubMedCrossRef
6.
go back to reference Wiedner M, Tinhofer IE, Kamolz LP, et al. Simultaneous dermal matrix and autologous split-thickness skin graft transplantation in a porcine wound model: a three-dimensional histological analysis of revascularization. Wound Repair Regen. 2014;22(6):749–54.PubMedCrossRef Wiedner M, Tinhofer IE, Kamolz LP, et al. Simultaneous dermal matrix and autologous split-thickness skin graft transplantation in a porcine wound model: a three-dimensional histological analysis of revascularization. Wound Repair Regen. 2014;22(6):749–54.PubMedCrossRef
7.
go back to reference Kamolz LP, Schintler M, Parvizi D, Selig H, Lumenta DB. The real expansion rate of meshers and micrografts: things we should keep in mind. Ann Burns Fire Disasters. 2013;26(1):26–9.PubMedPubMedCentral Kamolz LP, Schintler M, Parvizi D, Selig H, Lumenta DB. The real expansion rate of meshers and micrografts: things we should keep in mind. Ann Burns Fire Disasters. 2013;26(1):26–9.PubMedPubMedCentral
8.
go back to reference Lumenta DB, Kamolz LP, Keck M, Frey M. Comparison of meshed versus MEEK micrografted skin expansion rate: claimed, achieved, and polled results. Plast Reconstr Surg. 2011;128(1):40e–1e.PubMedCrossRef Lumenta DB, Kamolz LP, Keck M, Frey M. Comparison of meshed versus MEEK micrografted skin expansion rate: claimed, achieved, and polled results. Plast Reconstr Surg. 2011;128(1):40e–1e.PubMedCrossRef
9.
go back to reference Lumenta DB, Kamolz LP, Frey M. Adult burn patients with more than 60 % TBSA involved-Meek and other techniques to overcome restricted skin harvest availability—the Viennese concept. J Burn Care Res. 2009;30(2):231–42.PubMedCrossRef Lumenta DB, Kamolz LP, Frey M. Adult burn patients with more than 60 % TBSA involved-Meek and other techniques to overcome restricted skin harvest availability—the Viennese concept. J Burn Care Res. 2009;30(2):231–42.PubMedCrossRef
10.
go back to reference Astarita C, Arora CL, Trovato L. Tissue regeneration: an overview from stem cells to micrografts. J Int Med Res. 2020;48(6):300060520914794.PubMedCrossRef Astarita C, Arora CL, Trovato L. Tissue regeneration: an overview from stem cells to micrografts. J Int Med Res. 2020;48(6):300060520914794.PubMedCrossRef
11.
go back to reference Horch RE, Corbei O, Formanek-Corbei B, Brand-Saberi B, Vanscheidt W, Stark GB. Reconstitution of basement membrane after “sandwich-technique” skin grafting for severe burns demonstrated by immunohistochemistry. J Burn Care Rehabil. 1998;19(3):189–202.PubMedCrossRef Horch RE, Corbei O, Formanek-Corbei B, Brand-Saberi B, Vanscheidt W, Stark GB. Reconstitution of basement membrane after “sandwich-technique” skin grafting for severe burns demonstrated by immunohistochemistry. J Burn Care Rehabil. 1998;19(3):189–202.PubMedCrossRef
12.
go back to reference Horch R, Stark GB, Kopp J, Spilker G. Cologne burn centre experiences with glycerol-preserved allogeneic skin: part I: clinical experiences and histological findings (overgraft and sandwich technique). Burns. 1994;20(1):S23–6.PubMedCrossRef Horch R, Stark GB, Kopp J, Spilker G. Cologne burn centre experiences with glycerol-preserved allogeneic skin: part I: clinical experiences and histological findings (overgraft and sandwich technique). Burns. 1994;20(1):S23–6.PubMedCrossRef
13.
go back to reference Haller HL, Blome-Eberwein SE, Branski LK, et al. Porcine xenograft and epidermal fully synthetic skin substitutes in the treatment of partial-thickness burns: a literature review. Medicina (Kaunas). 2021;57(5):432.CrossRef Haller HL, Blome-Eberwein SE, Branski LK, et al. Porcine xenograft and epidermal fully synthetic skin substitutes in the treatment of partial-thickness burns: a literature review. Medicina (Kaunas). 2021;57(5):432.CrossRef
14.
15.
go back to reference Dorweiler B, Trinh T, Dürnschede F, et al. The marine Omega3 wound matrix for treatment of complicated wounds. A multicenter experience report. Gefäßchirurgie. 2018;23(2):S46–S55.CrossRef Dorweiler B, Trinh T, Dürnschede F, et al. The marine Omega3 wound matrix for treatment of complicated wounds. A multicenter experience report. Gefäßchirurgie. 2018;23(2):S46–S55.CrossRef
16.
go back to reference Lullove EJ, Liden B, Winters C, et al. A multicenter, blinded, randomized controlled clinical trial evaluating the effect of omega-3-rich fish skin in the treatment of chronic, nonresponsive diabetic foot ulcers. Wounds. 2021;33(7):169–77.PubMedCrossRef Lullove EJ, Liden B, Winters C, et al. A multicenter, blinded, randomized controlled clinical trial evaluating the effect of omega-3-rich fish skin in the treatment of chronic, nonresponsive diabetic foot ulcers. Wounds. 2021;33(7):169–77.PubMedCrossRef
17.
go back to reference Stone R 2nd, Saathoff EC, Larson DA, et al. Accelerated wound closure of deep partial thickness burns with acellular fish skin graft. Int J Mol Sci. 2021;22(4):1590.PubMedPubMedCentralCrossRef Stone R 2nd, Saathoff EC, Larson DA, et al. Accelerated wound closure of deep partial thickness burns with acellular fish skin graft. Int J Mol Sci. 2021;22(4):1590.PubMedPubMedCentralCrossRef
18.
go back to reference Alam K, Jeffery SLA. Acellular fish skin grafts for management of split thickness donor sites and partial thickness burns: a case series. Mil Med. 2019;184(1):16–20.PubMedCrossRef Alam K, Jeffery SLA. Acellular fish skin grafts for management of split thickness donor sites and partial thickness burns: a case series. Mil Med. 2019;184(1):16–20.PubMedCrossRef
19.
go back to reference Michael S, Winters C, Khan M. Acellular fish skin graft use for diabetic lower extremity wound healing: a retrospective study of 58 ulcerations and a literature review. Wounds. 2019;31(10):262–8.PubMed Michael S, Winters C, Khan M. Acellular fish skin graft use for diabetic lower extremity wound healing: a retrospective study of 58 ulcerations and a literature review. Wounds. 2019;31(10):262–8.PubMed
20.
go back to reference Kirsner RS, Margolis DJ, Baldursson BT, et al. Fish skin grafts compared to human amnion/chorion membrane allografts: a double-blind, prospective, randomized clinical trial of acute wound healing. Wound Repair Regen. 2020;28(1):75–80.PubMedCrossRef Kirsner RS, Margolis DJ, Baldursson BT, et al. Fish skin grafts compared to human amnion/chorion membrane allografts: a double-blind, prospective, randomized clinical trial of acute wound healing. Wound Repair Regen. 2020;28(1):75–80.PubMedCrossRef
21.
go back to reference Woodrow T, Chant T, Chant H. Treatment of diabetic foot wounds with acellular fish skin graft rich in omega-3: a prospective evaluation. J Wound Care. 2019;28(2):76–80.PubMedCrossRef Woodrow T, Chant T, Chant H. Treatment of diabetic foot wounds with acellular fish skin graft rich in omega-3: a prospective evaluation. J Wound Care. 2019;28(2):76–80.PubMedCrossRef
22.
go back to reference Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med. 2021;6(1):35.PubMedPubMedCentralCrossRef Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med. 2021;6(1):35.PubMedPubMedCentralCrossRef
23.
go back to reference Keck M, Haluza D, Lumenta DB, et al. Construction of a multi-layer skin substitute: simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns. 2011;37(4):626–30.PubMedCrossRef Keck M, Haluza D, Lumenta DB, et al. Construction of a multi-layer skin substitute: simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns. 2011;37(4):626–30.PubMedCrossRef
24.
go back to reference Kamolz LP, Luegmair M, Wick N, et al. The Viennese culture method: cultured human epithelium obtained on a dermal matrix based on fibroblast containing fibrin glue gels. Burns. 2005;31(1):25–9.PubMedCrossRef Kamolz LP, Luegmair M, Wick N, et al. The Viennese culture method: cultured human epithelium obtained on a dermal matrix based on fibroblast containing fibrin glue gels. Burns. 2005;31(1):25–9.PubMedCrossRef
25.
go back to reference Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.PubMedCrossRef Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.PubMedCrossRef
26.
go back to reference Sun TT, Green H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 1976;9(4 Pt 1):511–21.PubMedCrossRef Sun TT, Green H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 1976;9(4 Pt 1):511–21.PubMedCrossRef
27.
go back to reference Green H, Rheinwald JG, Sun TT. Properties of an epithelial cell type in culture: the epidermal keratinocyte and its dependence on products of the fibroblast. Prog Clin Biol Res. 1977;17:493–500.PubMed Green H, Rheinwald JG, Sun TT. Properties of an epithelial cell type in culture: the epidermal keratinocyte and its dependence on products of the fibroblast. Prog Clin Biol Res. 1977;17:493–500.PubMed
28.
go back to reference Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977;265(5593):421–4.PubMedCrossRef Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977;265(5593):421–4.PubMedCrossRef
29.
go back to reference Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.PubMedCrossRef Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.PubMedCrossRef
30.
go back to reference Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res. 1980;14(2):107–32.PubMedCrossRef Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res. 1980;14(2):107–32.PubMedCrossRef
31.
go back to reference Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV. Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res. 1980;14(4):511–28.PubMedCrossRef Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV. Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res. 1980;14(4):511–28.PubMedCrossRef
32.
go back to reference Uhlig C, Rapp M, Hartmann B, Hierlemann H, Planck H, Dittel KK. Suprathel—an innovative, resorbable skin substitute for the treatment of burn victims. Burns. 2007;33(2):221–9.PubMedCrossRef Uhlig C, Rapp M, Hartmann B, Hierlemann H, Planck H, Dittel KK. Suprathel—an innovative, resorbable skin substitute for the treatment of burn victims. Burns. 2007;33(2):221–9.PubMedCrossRef
35.
go back to reference Di Piazza E, Pandolfi E, Cacciotti I, et al. Bioprinting technology in skin, heart, pancreas and cartilage tissues: progress and challenges in clinical practice. Int J Environ Res Public Health. 2021;18(20):1–30.CrossRef Di Piazza E, Pandolfi E, Cacciotti I, et al. Bioprinting technology in skin, heart, pancreas and cartilage tissues: progress and challenges in clinical practice. Int J Environ Res Public Health. 2021;18(20):1–30.CrossRef
36.
go back to reference Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022;14(2):464.PubMedPubMedCentralCrossRef Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, et al. The 3D bioprinted scaffolds for wound healing. Pharmaceutics. 2022;14(2):464.PubMedPubMedCentralCrossRef
37.
go back to reference Jang KS, Park SJ, Choi JJ, et al. Therapeutic efficacy of artificial skin produced by 3D bioprinting. Materials (Basel). 2021;14(18):5177.CrossRef Jang KS, Park SJ, Choi JJ, et al. Therapeutic efficacy of artificial skin produced by 3D bioprinting. Materials (Basel). 2021;14(18):5177.CrossRef
38.
go back to reference Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, et al. Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg. 2018;71(5):615–23.PubMedCrossRef Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, et al. Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg. 2018;71(5):615–23.PubMedCrossRef
39.
go back to reference Bay C, Chizmar Z, Reece EM, et al. Comparison of skin substitutes for acute and chronic wound management. Semin Plast Surg. 2021;35(3):171–80.PubMedCrossRef Bay C, Chizmar Z, Reece EM, et al. Comparison of skin substitutes for acute and chronic wound management. Semin Plast Surg. 2021;35(3):171–80.PubMedCrossRef
40.
go back to reference Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatolog Treat. 2020;31(6):639–48.PubMedCrossRef Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review. J Dermatolog Treat. 2020;31(6):639–48.PubMedCrossRef
41.
go back to reference Haller HL, Rapp M, Popp D, Nischwitz SP, Kamolz LP. Made in Germany: a quality indicator not only in the automobile industry but also when it comes to skin replacement: how an automobile textile research institute developed a new skin substitute. Medicina (Kaunas). 2021;57(2):143.CrossRef Haller HL, Rapp M, Popp D, Nischwitz SP, Kamolz LP. Made in Germany: a quality indicator not only in the automobile industry but also when it comes to skin replacement: how an automobile textile research institute developed a new skin substitute. Medicina (Kaunas). 2021;57(2):143.CrossRef
42.
go back to reference Wurzer P, Keil H, Branski LK, et al. The use of skin substitutes and burn care—a survey. J Surg Res. 2016;201(2):293–8.PubMedCrossRef Wurzer P, Keil H, Branski LK, et al. The use of skin substitutes and burn care—a survey. J Surg Res. 2016;201(2):293–8.PubMedCrossRef
43.
go back to reference Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: current strategies and future directions. Curr Pharm Des. 2017;23(24):3455–82.PubMedCrossRef Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: current strategies and future directions. Curr Pharm Des. 2017;23(24):3455–82.PubMedCrossRef
Metadata
Title
Skin regeneration, repair, and reconstruction: present and future
Authors
Lars-Peter Kamolz, M.D. Ph.D. M.Sc.
Petra Kotzbeck
Michael Schintler
Stephan Spendel
Publication date
21-04-2022
Publisher
Springer Vienna
Keyword
Skin Graft
Published in
European Surgery / Issue 3/2022
Print ISSN: 1682-8631
Electronic ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-022-00757-9

Other articles of this Issue 3/2022

European Surgery 3/2022 Go to the issue