Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2023

12-04-2023 | Research Article

A low-rank deep image prior reconstruction for free-breathing ungated spiral functional CMR at 0.55 T and 1.5 T

Authors: Jesse I. Hamilton, William Truesdell, Mauricio Galizia, Nicholas Burris, Prachi Agarwal, Nicole Seiberlich

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2023

Login to get access

Abstract

Objective

This study combines a deep image prior with low-rank subspace modeling to enable real-time (free-breathing and ungated) functional cardiac imaging on a commercial 0.55 T scanner.

Materials and methods

The proposed low-rank deep image prior (LR-DIP) uses two u-nets to generate spatial and temporal basis functions that are combined to yield dynamic images, with no need for additional training data. Simulations and scans in 13 healthy subjects were performed at 0.55 T and 1.5 T using a golden angle spiral bSSFP sequence with images reconstructed using \({l}_{1}\)-ESPIRiT, low-rank plus sparse (L + S) matrix completion, and LR-DIP. Cartesian breath-held ECG-gated cine images were acquired for reference at 1.5 T. Two cardiothoracic radiologists rated images on a 1–5 scale for various categories, and LV function measurements were compared.

Results

LR-DIP yielded the lowest errors in simulations, especially at high acceleration factors (R \(\ge\) 8). LR-DIP ejection fraction measurements agreed with 1.5 T reference values (mean bias − 0.3% at 0.55 T and − 0.2% at 1.5 T). Compared to reference images, LR-DIP images received similar ratings at 1.5 T (all categories above 3.9) and slightly lower at 0.55 T (above 3.4).

Conclusion

Feasibility of real-time functional cardiac imaging using a low-rank deep image prior reconstruction was demonstrated in healthy subjects on a commercial 0.55 T scanner.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bogaert J, Dymarkowski S, Taylor AM, Muthurangu V (2012) Clinical Cardiac MRI, 2nd edn. Springer-Verlag, Berlin HeidelbergCrossRef Bogaert J, Dymarkowski S, Taylor AM, Muthurangu V (2012) Clinical Cardiac MRI, 2nd edn. Springer-Verlag, Berlin HeidelbergCrossRef
2.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRef
3.
go back to reference Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 3:1–9PubMedCrossRef Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 3:1–9PubMedCrossRef
4.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef
5.
go back to reference Kellman P, Epstein FH, McVeigh ER (2001) Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 45:846–852PubMedCrossRef Kellman P, Epstein FH, McVeigh ER (2001) Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 45:846–852PubMedCrossRef
6.
go back to reference Breuer FA, Kellman P, Griswold MA, Jakob PM, Breuer FA, Kellman P, Griswold MA, Jakob PM (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53:981–985PubMedCrossRef Breuer FA, Kellman P, Griswold MA, Jakob PM, Breuer FA, Kellman P, Griswold MA, Jakob PM (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53:981–985PubMedCrossRef
7.
go back to reference Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT - An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn Reson Med 71:990–1001PubMedPubMedCentralCrossRef Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT - An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn Reson Med 71:990–1001PubMedPubMedCentralCrossRef
8.
go back to reference Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: Dynamic MRI With High Frame Rate Exploiting Spatiotemporal Correlations. Magn Reson Med 50:1031–1042PubMedCrossRef Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: Dynamic MRI With High Frame Rate Exploiting Spatiotemporal Correlations. Magn Reson Med 50:1031–1042PubMedCrossRef
9.
go back to reference Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) K-t GRAPPA: A k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184PubMedCrossRef Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M (2005) K-t GRAPPA: A k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184PubMedCrossRef
10.
go back to reference Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRef Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRef
11.
go back to reference Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EVR, Sodickson DK, Otazo R, Kim D (2013) Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 70:64–74PubMedCrossRef Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EVR, Sodickson DK, Otazo R, Kim D (2013) Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 70:64–74PubMedCrossRef
12.
go back to reference Feng L, Grimm R, Obias BKT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717PubMedCrossRef Feng L, Grimm R, Obias BKT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717PubMedCrossRef
13.
go back to reference Jung H, Park J, Yoo J, Ye JC (2010) Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magn Reson Med 63:68–78PubMedCrossRef Jung H, Park J, Yoo J, Ye JC (2010) Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magn Reson Med 63:68–78PubMedCrossRef
14.
go back to reference Zhao B, Haldar JP, Brinegar C, Liang Z-P (2010) Low rank matrix recovery for real-time cardiac MRI. 2010 IEEE Int. Symp. Biomed. Imaging From Nano to Macro. 11:996–999CrossRef Zhao B, Haldar JP, Brinegar C, Liang Z-P (2010) Low rank matrix recovery for real-time cardiac MRI. 2010 IEEE Int. Symp. Biomed. Imaging From Nano to Macro. 11:996–999CrossRef
15.
go back to reference Lingala SG, Hu Y, Dibella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 30:1042–1054PubMedPubMedCentralCrossRef Lingala SG, Hu Y, Dibella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 30:1042–1054PubMedPubMedCentralCrossRef
16.
go back to reference Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Won YK (2009) K-t PCA: Temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62:706–716PubMedCrossRef Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Won YK (2009) K-t PCA: Temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62:706–716PubMedCrossRef
17.
go back to reference Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73:1125–1136PubMedCrossRef Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73:1125–1136PubMedCrossRef
18.
go back to reference Wang D, Smith DS, Yang X (2020) Dynamic MR image reconstruction based on total generalized variation and low-rank decomposition. Magn Reson Med 83:2064–2076PubMedCrossRef Wang D, Smith DS, Yang X (2020) Dynamic MR image reconstruction based on total generalized variation and low-rank decomposition. Magn Reson Med 83:2064–2076PubMedCrossRef
19.
go back to reference Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, Hansen MS, Rogers T, Patricia Bandettini W, McGuirt DR, Mancini C, Grodzki D, Schneider R, Majeed W, Bhat H, Xue H, Moss J, Malayeri AA, Jones EC, Koretsky AP, Kellman P, Chen MY, Lederman RJ, Balaban RS (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293:384–393PubMedCrossRef Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, Hansen MS, Rogers T, Patricia Bandettini W, McGuirt DR, Mancini C, Grodzki D, Schneider R, Majeed W, Bhat H, Xue H, Moss J, Malayeri AA, Jones EC, Koretsky AP, Kellman P, Chen MY, Lederman RJ, Balaban RS (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293:384–393PubMedCrossRef
20.
go back to reference Simonetti OP, Ahmad R (2017) Low-Field Cardiac Magnetic Resonance Imaging: A Compelling Case for Cardiac Magnetic Resonance’s Future. Circ Cardiovasc Imaging 10:e005446PubMedPubMedCentralCrossRef Simonetti OP, Ahmad R (2017) Low-Field Cardiac Magnetic Resonance Imaging: A Compelling Case for Cardiac Magnetic Resonance’s Future. Circ Cardiovasc Imaging 10:e005446PubMedPubMedCentralCrossRef
21.
go back to reference Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67PubMedCrossRef Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67PubMedCrossRef
22.
go back to reference Strach K, Naehle CP, Mühlsteffen A, Hinz M, Bernstein A, Thomas D, Linhart M, Meyer C, Bitaraf S, Schild H, Sommer T (2010) Low-field magnetic resonance imaging: Increased safety for pacemaker patients? Europace 12:952–960PubMedCrossRef Strach K, Naehle CP, Mühlsteffen A, Hinz M, Bernstein A, Thomas D, Linhart M, Meyer C, Bitaraf S, Schild H, Sommer T (2010) Low-field magnetic resonance imaging: Increased safety for pacemaker patients? Europace 12:952–960PubMedCrossRef
23.
go back to reference Bandettini WP, Shanbhag SM, Mancini C, McGuirt DR, Kellman P, Xue H, Henry JL, Lowery M, Thein SL, Chen MY, Campbell-Washburn AE (2020) A comparison of cine CMR imaging at 0.55 T and 1.5 T. J Cardiovasc Magn Reson 22:37PubMedPubMedCentralCrossRef Bandettini WP, Shanbhag SM, Mancini C, McGuirt DR, Kellman P, Xue H, Henry JL, Lowery M, Thein SL, Chen MY, Campbell-Washburn AE (2020) A comparison of cine CMR imaging at 0.55 T and 1.5 T. J Cardiovasc Magn Reson 22:37PubMedPubMedCentralCrossRef
24.
go back to reference Srinivasan S, Ennis DB (2015) Optimal flip angle for high contrast balanced SSFP cardiac cine imaging. Magn Reson Med 73:1095–1103PubMedCrossRef Srinivasan S, Ennis DB (2015) Optimal flip angle for high contrast balanced SSFP cardiac cine imaging. Magn Reson Med 73:1095–1103PubMedCrossRef
25.
go back to reference Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE (2020) Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 84:2364–2375PubMedPubMedCentralCrossRef Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE (2020) Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 84:2364–2375PubMedPubMedCentralCrossRef
27.
go back to reference Fyrdahl A, Seiberlich N (2022) Real-time Cardiac MRI at 0.55T using through-time spiral GRAPPA. Proc. 31st Annu. ISMRM. p 1843 Fyrdahl A, Seiberlich N (2022) Real-time Cardiac MRI at 0.55T using through-time spiral GRAPPA. Proc. 31st Annu. ISMRM. p 1843
28.
go back to reference Tian Y, Lim Y, Nayak KS (2022) Real-Time Water Fat Imaging at 0.55T with Spiral Out-In-Out-In Sampling. Proc. 31st Annual ISMRM. p 317 Tian Y, Lim Y, Nayak KS (2022) Real-Time Water Fat Imaging at 0.55T with Spiral Out-In-Out-In Sampling. Proc. 31st Annual ISMRM. p 317
29.
go back to reference Küstner T, Fuin N, Hammernik K, Bustin A, Qi H, Hajhosseiny R, Masci PG, Neji R, Rueckert D, Botnar RM, Prieto C (2020) CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep 10:1–13CrossRef Küstner T, Fuin N, Hammernik K, Bustin A, Qi H, Hajhosseiny R, Masci PG, Neji R, Rueckert D, Botnar RM, Prieto C (2020) CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep 10:1–13CrossRef
30.
go back to reference Sandino CM, Lai P, Vasanawala SS, Cheng JY (2021) Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn Reson Med 85:152–167PubMedCrossRef Sandino CM, Lai P, Vasanawala SS, Cheng JY (2021) Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn Reson Med 85:152–167PubMedCrossRef
31.
go back to reference El-Rewaidy H, Fahmy AS, Pashakhanloo F, Cai X, Kucukseymen S, Csecs I, Neisius U, Haji-Valizadeh H, Menze B, Nezafat R (2021) Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magn Reson Med 85:1195–1208PubMedCrossRef El-Rewaidy H, Fahmy AS, Pashakhanloo F, Cai X, Kucukseymen S, Csecs I, Neisius U, Haji-Valizadeh H, Menze B, Nezafat R (2021) Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magn Reson Med 85:1195–1208PubMedCrossRef
32.
go back to reference Jaubert O, Montalt-Tordera J, Knight D, Coghlan GJ, Arridge S, Steeden JA, Muthurangu V (2021) Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI. Magn Reson Med 86:1904–1916PubMedPubMedCentralCrossRef Jaubert O, Montalt-Tordera J, Knight D, Coghlan GJ, Arridge S, Steeden JA, Muthurangu V (2021) Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI. Magn Reson Med 86:1904–1916PubMedPubMedCentralCrossRef
33.
go back to reference Shen D, Ghosh S, Haji-Valizadeh H, Pathrose A, Schiffers F, Lee DC, Freed BH, Markl M, Cossairt OS, Katsaggelos AK, Kim D (2021) Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN). NMR Biomed 34:e4405PubMedCrossRef Shen D, Ghosh S, Haji-Valizadeh H, Pathrose A, Schiffers F, Lee DC, Freed BH, Markl M, Cossairt OS, Katsaggelos AK, Kim D (2021) Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN). NMR Biomed 34:e4405PubMedCrossRef
34.
go back to reference Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA (2019) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magn Reson Med 81:1143–1156PubMedCrossRef Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA (2019) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magn Reson Med 81:1143–1156PubMedCrossRef
35.
go back to reference Morales MA, Assana S, Cai X, Chow K, Haji-Valizadeh H, Sai E, Tsao C, Matos J, Rodriguez J, Berg S, Whitehead N, Pierce P, Goddu B, Manning WJ, Nezafat R (2022) An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance. J Cardiovasc Magn Reson 24:47PubMedPubMedCentralCrossRef Morales MA, Assana S, Cai X, Chow K, Haji-Valizadeh H, Sai E, Tsao C, Matos J, Rodriguez J, Berg S, Whitehead N, Pierce P, Goddu B, Manning WJ, Nezafat R (2022) An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance. J Cardiovasc Magn Reson 24:47PubMedPubMedCentralCrossRef
36.
go back to reference Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep Image Prior. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. IEEE Computer Society. 9446–9454 Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep Image Prior. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. IEEE Computer Society. 9446–9454
37.
go back to reference Chakrabarty P, Maji S (2019) The spectral bias of the deep image prior. arXiv Prepr. arXIV1912 08905 Chakrabarty P, Maji S (2019) The spectral bias of the deep image prior. arXiv Prepr. arXIV1912 08905
40.
go back to reference Jafari R, Spincemaille P, Zhang J, Nguyen TD, Luo X, Cho J, Margolis D, Prince MR, Wang Y (2021) Deep neural network for water/fat separation: Supervised training, unsupervised training, and no training. Magn Reson Med 85:2263–2277PubMedCrossRef Jafari R, Spincemaille P, Zhang J, Nguyen TD, Luo X, Cho J, Margolis D, Prince MR, Wang Y (2021) Deep neural network for water/fat separation: Supervised training, unsupervised training, and no training. Magn Reson Med 85:2263–2277PubMedCrossRef
41.
go back to reference Hamilton JI (2022) A Self-Supervised Deep Learning Reconstruction for Shortening the Breathhold and Acquisition Window in Cardiac Magnetic Resonance Fingerprinting. Front Cardiovasc Med 9:928546PubMedPubMedCentralCrossRef Hamilton JI (2022) A Self-Supervised Deep Learning Reconstruction for Shortening the Breathhold and Acquisition Window in Cardiac Magnetic Resonance Fingerprinting. Front Cardiovasc Med 9:928546PubMedPubMedCentralCrossRef
42.
go back to reference Yoo J, Jin KH, Gupta H, Yerly J, Stuber M, Unser M (2021) Time-Dependent Deep Image Prior for Dynamic MRI. IEEE Trans Med Imaging 40:3337–3348PubMedCrossRef Yoo J, Jin KH, Gupta H, Yerly J, Stuber M, Unser M (2021) Time-Dependent Deep Image Prior for Dynamic MRI. IEEE Trans Med Imaging 40:3337–3348PubMedCrossRef
43.
go back to reference Fessler J, Sutton B (2003) Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 51:560–574CrossRef Fessler J, Sutton B (2003) Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 51:560–574CrossRef
44.
go back to reference Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM, Griswold MA (2007) Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG). Magn Reson Med 58:1257–1265PubMedCrossRef Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM, Griswold MA (2007) Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG). Magn Reson Med 58:1257–1265PubMedCrossRef
46.
go back to reference Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 26:68–76PubMedCrossRef Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 26:68–76PubMedCrossRef
47.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128PubMedCrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128PubMedCrossRef
48.
go back to reference Zou Q, Ahmed AH, Nagpal P, Kruger S, Jacob M (2021) Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model. IEEE Trans Med Imaging 40:3102–3112PubMedPubMedCentralCrossRef Zou Q, Ahmed AH, Nagpal P, Kruger S, Jacob M (2021) Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model. IEEE Trans Med Imaging 40:3102–3112PubMedPubMedCentralCrossRef
Metadata
Title
A low-rank deep image prior reconstruction for free-breathing ungated spiral functional CMR at 0.55 T and 1.5 T
Authors
Jesse I. Hamilton
William Truesdell
Mauricio Galizia
Nicholas Burris
Prachi Agarwal
Nicole Seiberlich
Publication date
12-04-2023
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2023
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-023-01088-w

Other articles of this Issue 3/2023

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2023 Go to the issue