Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2019

01-04-2019 | Research Article

Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images

Authors: Sara Moccia, Riccardo Banali, Chiara Martini, Giuseppe Muscogiuri, Gianluca Pontone, Mauro Pepi, Enrico Gianluca Caiani

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2019

Login to get access

Abstract

Objective

The aim of this paper is to investigate the use of fully convolutional neural networks (FCNNs) to segment scar tissue in the left ventricle from cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) images.

Methods

A successful FCNN in the literature (the ENet) was modified and trained to provide scar-tissue segmentation. Two segmentation protocols (Protocol 1 and Protocol 2) were investigated, the latter limiting the scar-segmentation search area to the left ventricular myocardial tissue region. CMR-LGE from 30 patients with ischemic-heart disease were retrospectively analyzed, for a total of 250 images, presenting high variability in terms of scar dimension and location. Segmentation results were assessed against manual scar-tissue tracing using one-patient-out cross validation.

Results

Protocol 2 outperformed Protocol 1 significantly (p value < 0.05), with median sensitivity and Dice similarity coefficient equal to 88.07% [inter-quartile range (IQR) 18.84%] and 71.25% (IQR 31.82%), respectively.

Discussion

Both segmentation protocols were able to detect scar tissues in the CMR-LGE images but higher performance was achieved when limiting the search area to the myocardial region. The findings of this paper represent an encouraging starting point for the use of FCNNs for the segmentation of nonviable scar tissue from CMR-LGE images.
Literature
1.
go back to reference Alexandre J, Saloux E, Dugué AE, Lebon A, Lemaitre A, Roule V, Labombarda F, Provost N, Gomes S, Scanu P (2013) Scar extent evaluated by late gadolinium enhancement CMR: a powerful predictor of long term appropriate ICD therapy in patients with coronary artery disease. J Cardiovasc Magn Reson 15(1):12CrossRefPubMedPubMedCentral Alexandre J, Saloux E, Dugué AE, Lebon A, Lemaitre A, Roule V, Labombarda F, Provost N, Gomes S, Scanu P (2013) Scar extent evaluated by late gadolinium enhancement CMR: a powerful predictor of long term appropriate ICD therapy in patients with coronary artery disease. J Cardiovasc Magn Reson 15(1):12CrossRefPubMedPubMedCentral
2.
go back to reference Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, Bax JJ, Nagel E (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54(19):1770–1777CrossRefPubMed Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, Bax JJ, Nagel E (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54(19):1770–1777CrossRefPubMed
3.
go back to reference Usta F, Gueaieb W, White JA, McKeen C, Ukwatta E (2018) Comparison of myocardial scar geometries generated from 2D and 3D LGE MRI. In: Medical imaging 2018, international society for optics and photonics, vol 10578, p 105780K Usta F, Gueaieb W, White JA, McKeen C, Ukwatta E (2018) Comparison of myocardial scar geometries generated from 2D and 3D LGE MRI. In: Medical imaging 2018, international society for optics and photonics, vol 10578, p 105780K
4.
go back to reference Dikici E, ODonnell T, Setser R, White RD (2004) Quantification of delayed enhancement MR images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 250–257 Dikici E, ODonnell T, Setser R, White RD (2004) Quantification of delayed enhancement MR images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 250–257
5.
go back to reference Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453CrossRefPubMed Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453CrossRefPubMed
6.
go back to reference Mewton N, Revel D, Bonnefoy E, Ovize M, Croisille P (2011) Comparison of visual scoring and quantitative planimetry methods for estimation of global infarct size on delayed enhanced cardiac MRI and validation with myocardial enzymes. Eur J Radiol 78(1):87–92CrossRefPubMed Mewton N, Revel D, Bonnefoy E, Ovize M, Croisille P (2011) Comparison of visual scoring and quantitative planimetry methods for estimation of global infarct size on delayed enhanced cardiac MRI and validation with myocardial enzymes. Eur J Radiol 78(1):87–92CrossRefPubMed
7.
go back to reference Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15(1):35CrossRefPubMedPubMedCentral Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15(1):35CrossRefPubMedPubMedCentral
8.
go back to reference Carminati MC, Boniotti C, Fusini L, Andreini D, Pontone G, Pepi M, Caiani EG (2016) Comparison of image processing techniques for nonviable tissue quantification in late gadolinium enhancement cardiac magnetic resonance images. J Thorac Imaging 31(3):168–176CrossRefPubMed Carminati MC, Boniotti C, Fusini L, Andreini D, Pontone G, Pepi M, Caiani EG (2016) Comparison of image processing techniques for nonviable tissue quantification in late gadolinium enhancement cardiac magnetic resonance images. J Thorac Imaging 31(3):168–176CrossRefPubMed
9.
go back to reference Hsu LY, Natanzon A, Kellman P, Hirsch GA, Aletras AH, Arai AE (2006) Quantitative myocardial infarction on delayed enhancement MRI. Part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23(3):298–308CrossRefPubMed Hsu LY, Natanzon A, Kellman P, Hirsch GA, Aletras AH, Arai AE (2006) Quantitative myocardial infarction on delayed enhancement MRI. Part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23(3):298–308CrossRefPubMed
10.
go back to reference Hennemuth A, Seeger A, Friman O, Miller S, Klumpp B, Oeltze S, Peitgen HO (2008) A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans Med Imaging 27(11):1592–1610CrossRefPubMed Hennemuth A, Seeger A, Friman O, Miller S, Klumpp B, Oeltze S, Peitgen HO (2008) A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans Med Imaging 27(11):1592–1610CrossRefPubMed
11.
go back to reference Pop M, Ghugre NR, Ramanan V, Morikawa L, Stanisz G, Dick AJ, Wright GA (2013) Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol 58(15):5009CrossRefPubMed Pop M, Ghugre NR, Ramanan V, Morikawa L, Stanisz G, Dick AJ, Wright GA (2013) Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol 58(15):5009CrossRefPubMed
12.
go back to reference Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36(6):1985–1991CrossRefPubMed Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36(6):1985–1991CrossRefPubMed
13.
go back to reference Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106(9):1083–1089CrossRefPubMed Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106(9):1083–1089CrossRefPubMed
14.
go back to reference Setser RM, Bexell DG, O’Donnell TP, Stillman AE, Lieber ML, Schoenhagen P, White RD (2003) Quantitative assessment of myocardial scar in delayed enhancement magnetic resonance imaging. J Magn Reson Imaging 18(4):434–441CrossRefPubMed Setser RM, Bexell DG, O’Donnell TP, Stillman AE, Lieber ML, Schoenhagen P, White RD (2003) Quantitative assessment of myocardial scar in delayed enhancement magnetic resonance imaging. J Magn Reson Imaging 18(4):434–441CrossRefPubMed
15.
go back to reference Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with \(^{201}\)T1 SPECT imaging. Radiology 232(1):49–57CrossRefPubMed Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with \(^{201}\)T1 SPECT imaging. Radiology 232(1):49–57CrossRefPubMed
16.
go back to reference Hennemuth A, Friman O, Huellebrand M, Peitgen HO (2012) Mixture-model-based segmentation of myocardial delayed enhancement MRI. In: International workshop on statistical atlases and computational models of the heart. Springer, pp 87–96 Hennemuth A, Friman O, Huellebrand M, Peitgen HO (2012) Mixture-model-based segmentation of myocardial delayed enhancement MRI. In: International workshop on statistical atlases and computational models of the heart. Springer, pp 87–96
17.
go back to reference Grau V (2017) Automated LGE myocardial scar segmentation using MaskSLIC supervoxels-replicating the clinical method. In: Medical image understanding and analysis, vol 723. Springer, p 229 Grau V (2017) Automated LGE myocardial scar segmentation using MaskSLIC supervoxels-replicating the clinical method. In: Medical image understanding and analysis, vol 723. Springer, p 229
18.
go back to reference Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Li L, Wage R, Ye X, Slabaugh G, Mohiaddin R (2018) Fully automatic segmentation and objective assessment of atrial scars for longstanding persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Med Phys 45(4):1562–1576CrossRefPubMedPubMedCentral Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Li L, Wage R, Ye X, Slabaugh G, Mohiaddin R (2018) Fully automatic segmentation and objective assessment of atrial scars for longstanding persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Med Phys 45(4):1562–1576CrossRefPubMedPubMedCentral
19.
go back to reference Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: IEEE conference on computer vision and pattern recognition, pp 1356–1363 Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: IEEE conference on computer vision and pattern recognition, pp 1356–1363
20.
go back to reference Usta F, Gueaieb W, White JA, Ukwatta E (2018) 3d scar segmentation from LGE-MRI using a continuous max-flow method. In: Medical imaging 2018: biomedical applications in molecular, structural, and functional imaging, international society for optics and photonics, vol 10578, p 105780U Usta F, Gueaieb W, White JA, Ukwatta E (2018) 3d scar segmentation from LGE-MRI using a continuous max-flow method. In: Medical imaging 2018: biomedical applications in molecular, structural, and functional imaging, international society for optics and photonics, vol 10578, p 105780U
21.
go back to reference Liu X, Shen Y, Zhao X, Zhang S (2017) Quantized segmentation of fibrotic tissue of left atrial from delay-enhancement MRI images using level-set and graph-cut. In: IEEE international conference on machine vision and information technology, IEEE, pp 23–27 Liu X, Shen Y, Zhao X, Zhang S (2017) Quantized segmentation of fibrotic tissue of left atrial from delay-enhancement MRI images using level-set and graph-cut. In: IEEE international conference on machine vision and information technology, IEEE, pp 23–27
22.
go back to reference Karim R, Bhagirath P, Claus P, Housden RJ, Chen Z, Karimaghaloo Z, Sohn HM, Rodríguez LL, Vera S, Albà X (2016) Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med Image Anal 30:95–107CrossRefPubMed Karim R, Bhagirath P, Claus P, Housden RJ, Chen Z, Karimaghaloo Z, Sohn HM, Rodríguez LL, Vera S, Albà X (2016) Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med Image Anal 30:95–107CrossRefPubMed
23.
go back to reference Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691CrossRefPubMed Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691CrossRefPubMed
24.
go back to reference Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Ye X, Slabaugh G, Wong T, Mohiaddin R, Keegan J et al (2017) Segmenting atrial fibrosis from late gadolinium-enhanced cardiac MRI by deep-learned features with stacked sparse auto-encoders. In: Annual conference on medical image understanding and analysis. Springer, pp 195–206 Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Ye X, Slabaugh G, Wong T, Mohiaddin R, Keegan J et al (2017) Segmenting atrial fibrosis from late gadolinium-enhanced cardiac MRI by deep-learned features with stacked sparse auto-encoders. In: Annual conference on medical image understanding and analysis. Springer, pp 195–206
25.
go back to reference Zabihollahy F, White JA, Ukwatta E (2018) Myocardial scar segmentation from magnetic resonance images using convolutional neural network. In: Medical imaging 2018, international society for optics and photonics, vol 10575, p 105752Z Zabihollahy F, White JA, Ukwatta E (2018) Myocardial scar segmentation from magnetic resonance images using convolutional neural network. In: Medical imaging 2018, international society for optics and photonics, vol 10575, p 105752Z
26.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3431–3440
27.
go back to reference Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed 158:71–91CrossRefPubMed Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed 158:71–91CrossRefPubMed
28.
go back to reference Lau F, Hendriks T, Lieman-Sifry J, Sall S, Golden D (2018) Scargan: chained generative adversarial networks to simulate pathological tissue on cardiovascular MR scans. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS (eds) Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 343–350CrossRef Lau F, Hendriks T, Lieman-Sifry J, Sall S, Golden D (2018) Scargan: chained generative adversarial networks to simulate pathological tissue on cardiovascular MR scans. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS (eds) Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 343–350CrossRef
29.
go back to reference Lieman-Sifry J, Le M, Lau F, Sall S, Golden D (2017) Fastventricle: cardiac segmentation with Enet. In: International conference on functional imaging and modeling of the heart. Springer, pp 127–138 Lieman-Sifry J, Le M, Lau F, Sall S, Golden D (2017) Fastventricle: cardiac segmentation with Enet. In: International conference on functional imaging and modeling of the heart. Springer, pp 127–138
30.
go back to reference Chen J, Yang G, Gao Z, Ni H, Angelini E, Mohiaddin R, Wong T, Zhang Y, Du X, Zhang H et al (2018) Multiview two-task recursive attention model for left atrium and atrial scars segmentation. Springer, Berlin, pp 455–463 Chen J, Yang G, Gao Z, Ni H, Angelini E, Mohiaddin R, Wong T, Zhang Y, Du X, Zhang H et al (2018) Multiview two-task recursive attention model for left atrium and atrial scars segmentation. Springer, Berlin, pp 455–463
31.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
32.
go back to reference Paszke A, Chaurasia A, Kim S, Culurciello E (2016) Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:160602147 Paszke A, Chaurasia A, Kim S, Culurciello E (2016) Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:​160602147
33.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision. Springer, pp 630–645 He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision. Springer, pp 630–645
34.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition, pp 2818–2826
35.
go back to reference Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:150500853 Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:​150500853
36.
go back to reference Pedersen SJK (2007) Circular Hough transform. Aalborg Univ Vis Graph Interact Syst 123:123 Pedersen SJK (2007) Circular Hough transform. Aalborg Univ Vis Graph Interact Syst 123:123
38.
go back to reference Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations, vol 5 Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations, vol 5
39.
40.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef
41.
go back to reference Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel, Dordrecht, p 81 Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel, Dordrecht, p 81
42.
go back to reference Vrieze SI (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods 17(2):228CrossRefPubMedPubMedCentral Vrieze SI (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods 17(2):228CrossRefPubMedPubMedCentral
43.
go back to reference Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389CrossRefPubMed Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389CrossRefPubMed
44.
go back to reference Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, Muthurangu V, Moon JC (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. J Am Coll Cardiol 4(2):150–156CrossRef Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, Muthurangu V, Moon JC (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. J Am Coll Cardiol 4(2):150–156CrossRef
45.
go back to reference Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral
46.
go back to reference Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE fourth international conference on 3D vision, IEEE, pp 565–571 Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE fourth international conference on 3D vision, IEEE, pp 565–571
Metadata
Title
Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images
Authors
Sara Moccia
Riccardo Banali
Chiara Martini
Giuseppe Muscogiuri
Gianluca Pontone
Mauro Pepi
Enrico Gianluca Caiani
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0718-4

Other articles of this Issue 2/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2019 Go to the issue