Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2018

Open Access 01-06-2018 | Research Article

T 2 mapping of cerebrospinal fluid: 3 T versus 7 T

Authors: Jolanda M. Spijkerman, Esben T. Petersen, Jeroen Hendrikse, Peter Luijten, Jaco J. M. Zwanenburg

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2018

Login to get access

Abstract

Object

Cerebrospinal fluid (CSF) T 2 mapping can potentially be used to investigate CSF composition. A previously proposed CSF T 2–mapping method reported a T 2 difference between peripheral and ventricular CSF, and suggested that this reflected different CSF compositions. We studied the performance of this method at 7 T and evaluated the influence of partial volume and B 1 and B 0 inhomogeneity.

Materials and methods

T 2-preparation-based CSF T 2-mapping was performed in seven healthy volunteers at 7 and 3 T, and was compared with a single echo spin-echo sequence with various echo times. The influence of partial volume was assessed by our analyzing the longest echo times only. B 1 and B 0 maps were acquired. B 1 and B 0 dependency of the sequences was tested with a phantom.

Results

T 2,CSF was shorter at 7 T compared with 3 T. At 3 T, but not at 7 T, peripheral T 2,CSF was significantly shorter than ventricular T 2,CSF. Partial volume contributed to this T 2 difference, but could not fully explain it. B 1 and B 0 inhomogeneity had only a very limited effect. T 2,CSF did not depend on the voxel size, probably because of the used method to select of the regions of interest.

Conclusion

CSF T 2 mapping is feasible at 7 T. The shorter peripheral T 2,CSF is likely a combined effect of partial volume and CSF composition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Qin Q (2011) A simple approach for three-dimensional mapping of baseline cerebrospinal fluid volume fraction. Magn Reson Med 65:385–391CrossRefPubMed Qin Q (2011) A simple approach for three-dimensional mapping of baseline cerebrospinal fluid volume fraction. Magn Reson Med 65:385–391CrossRefPubMed
2.
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111CrossRefPubMedPubMedCentral Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111CrossRefPubMedPubMedCentral
3.
go back to reference Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:2013–2016CrossRef Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44:2013–2016CrossRef
4.
go back to reference Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377CrossRefPubMed Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377CrossRefPubMed
5.
go back to reference Spector R, Robert Snodgrass S, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68CrossRefPubMed Spector R, Robert Snodgrass S, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68CrossRefPubMed
6.
go back to reference De Bresser J, Brundel M, Conijn MM, Van Dillen JJ, Geerlings MI, Viergever MA, Luijten PR, Biessels GJ (2013) Visual cerebral microbleed detection on 7 T MR imaging: reliability and effects of image processing. Am J Neuroradiol 34:E61–E64CrossRefPubMed De Bresser J, Brundel M, Conijn MM, Van Dillen JJ, Geerlings MI, Viergever MA, Luijten PR, Biessels GJ (2013) Visual cerebral microbleed detection on 7 T MR imaging: reliability and effects of image processing. Am J Neuroradiol 34:E61–E64CrossRefPubMed
7.
go back to reference van Veluw SJ, Biessels GJ, Luijten PR, Zwanenburg JJM (2015) Assessing cortical cerebral microinfarcts on high resolution MR images. J Vis Exp 105:e53125 van Veluw SJ, Biessels GJ, Luijten PR, Zwanenburg JJM (2015) Assessing cortical cerebral microinfarcts on high resolution MR images. J Vis Exp 105:e53125
8.
go back to reference Wisse LEM, Biessels GJ, Heringa SM, Kuijf HJ, Koek DL, Luijten PR, Geerlings MI (2014) Hippocampal subfield volumes at 7 T in early Alzheimer’s disease and normal aging. Neurobiol Aging 35:2039–2045CrossRefPubMed Wisse LEM, Biessels GJ, Heringa SM, Kuijf HJ, Koek DL, Luijten PR, Geerlings MI (2014) Hippocampal subfield volumes at 7 T in early Alzheimer’s disease and normal aging. Neurobiol Aging 35:2039–2045CrossRefPubMed
9.
go back to reference Saekho S, Boada FE, Noll DC, Stenger VA (2005) Small tip angle three-dimensional tailored radiofrequency slab-select pulse for reduced B1 inhomogeneity at 3 T. Magn Reson Med 53:479–484CrossRefPubMedPubMedCentral Saekho S, Boada FE, Noll DC, Stenger VA (2005) Small tip angle three-dimensional tailored radiofrequency slab-select pulse for reduced B1 inhomogeneity at 3 T. Magn Reson Med 53:479–484CrossRefPubMedPubMedCentral
10.
go back to reference De Vis JB, Zwanenburg JJ, van der Kleij LA, Spijkerman JM, Biessels GJ, Hendrikse J, Petersen ET (2015) Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy. Eur Radiol 26:1254–1262CrossRefPubMedPubMedCentral De Vis JB, Zwanenburg JJ, van der Kleij LA, Spijkerman JM, Biessels GJ, Hendrikse J, Petersen ET (2015) Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy. Eur Radiol 26:1254–1262CrossRefPubMedPubMedCentral
11.
go back to reference Golay X, Petersen ET, Hui F (2005) Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 53:15–21CrossRefPubMed Golay X, Petersen ET, Hui F (2005) Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 53:15–21CrossRefPubMed
12.
go back to reference Levitt MH, Freeman R, Frenkiel T (1982) Broadband heteronuclear decoupling. J Magn Reson 47:328–330 Levitt MH, Freeman R, Frenkiel T (1982) Broadband heteronuclear decoupling. J Magn Reson 47:328–330
13.
go back to reference Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed
14.
go back to reference Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
15.
go back to reference Dale BM, Brown MA, Semelka RC (2015) MRI basic principles and applications, 5th edn. Wiley, HobokenCrossRef Dale BM, Brown MA, Semelka RC (2015) MRI basic principles and applications, 5th edn. Wiley, HobokenCrossRef
16.
go back to reference Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200CrossRefPubMed Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200CrossRefPubMed
17.
go back to reference MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B (2006) Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 24:515–525CrossRefPubMed MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B (2006) Insights into brain microstructure from the T2 distribution. Magn Reson Imaging 24:515–525CrossRefPubMed
18.
go back to reference Cox E, Gowland P (2008) Measuring T2 and T2′ in the brain at 1.5 T, 3 T and 7 T using a hybrid gradient echo-spin echo sequence and EPI. In: Proceedings of the 16th annual meeting of ISMRM, Toronto, Canada, p 1411 Cox E, Gowland P (2008) Measuring T2 and T2′ in the brain at 1.5 T, 3 T and 7 T using a hybrid gradient echo-spin echo sequence and EPI. In: Proceedings of the 16th annual meeting of ISMRM, Toronto, Canada, p 1411
19.
go back to reference Whittall KP, Mackay AL, Graeb DA, Nugent RA, Li DKB, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43CrossRefPubMed Whittall KP, Mackay AL, Graeb DA, Nugent RA, Li DKB, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43CrossRefPubMed
20.
go back to reference Daoust A, Dodd S, Nair G, Bouraoud N, Jacobson S, Walbridge S, Reich DS, Koretsky A (2017) Transverse relaxation of cerebrospinal fluid depends on glucose concentration. Magn Reson Imaging 44:72–81CrossRefPubMed Daoust A, Dodd S, Nair G, Bouraoud N, Jacobson S, Walbridge S, Reich DS, Koretsky A (2017) Transverse relaxation of cerebrospinal fluid depends on glucose concentration. Magn Reson Imaging 44:72–81CrossRefPubMed
21.
go back to reference Yamada S, Ishikawa M, Yamamot K (2015) Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. Am J Neuroradiol 36:2262–2269CrossRefPubMed Yamada S, Ishikawa M, Yamamot K (2015) Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. Am J Neuroradiol 36:2262–2269CrossRefPubMed
22.
go back to reference Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512CrossRefPubMed Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512CrossRefPubMed
23.
go back to reference Visser F, Zwanenburg JJM, Hoogduin JM, Luijten PR (2010) High-resolution magnetization-prepared 3D-FLAIR imaging at 7.0 tesla. Magn Reson Med 64:194–202CrossRefPubMed Visser F, Zwanenburg JJM, Hoogduin JM, Luijten PR (2010) High-resolution magnetization-prepared 3D-FLAIR imaging at 7.0 tesla. Magn Reson Med 64:194–202CrossRefPubMed
24.
25.
go back to reference Krishnamurthy LC, Liu P, Xu F, Uh J, Dimitrov I, Lu H (2014) Dependence of blood T2 on oxygenation at 7 T: in vitro calibration and in vivo application. Magn Reson Med 71:2035–2042CrossRefPubMed Krishnamurthy LC, Liu P, Xu F, Uh J, Dimitrov I, Lu H (2014) Dependence of blood T2 on oxygenation at 7 T: in vitro calibration and in vivo application. Magn Reson Med 71:2035–2042CrossRefPubMed
26.
go back to reference van Veluw SJ, Fracasso A, Visser F, Spliet WGM, Luijten PR, Biessels GJ, Zwanenburg JJM (2015) FLAIR images at 7 tesla MRI highlight the ependyma and the outer layers of the cerebral cortex. Neuroimage 104:100–109CrossRefPubMed van Veluw SJ, Fracasso A, Visser F, Spliet WGM, Luijten PR, Biessels GJ, Zwanenburg JJM (2015) FLAIR images at 7 tesla MRI highlight the ependyma and the outer layers of the cerebral cortex. Neuroimage 104:100–109CrossRefPubMed
27.
go back to reference Hopkins AL, Yeung HN, Bratton CB (1986) Multiple field strength in vivo T1 and T2 for cerebrospinal fluid protons. Magn Reson Med 3:303–311CrossRefPubMed Hopkins AL, Yeung HN, Bratton CB (1986) Multiple field strength in vivo T1 and T2 for cerebrospinal fluid protons. Magn Reson Med 3:303–311CrossRefPubMed
28.
go back to reference Yilmaz A, Ulak FŞ, Batun MS (2004) Proton T1 and T2 relaxivities of serum proteins. Magn Reson Imaging 22:683–688CrossRefPubMed Yilmaz A, Ulak FŞ, Batun MS (2004) Proton T1 and T2 relaxivities of serum proteins. Magn Reson Imaging 22:683–688CrossRefPubMed
29.
go back to reference Yadav NN, Xu J, Bar-Shir A, Qin Q, Chan KWY, Grgac K, Li W, McMahon MT, van Zijl PCM (2014) Natural d-glucose as a biodegradable MRI relaxation agent. Magn Reson Med 72:823–828CrossRefPubMedPubMedCentral Yadav NN, Xu J, Bar-Shir A, Qin Q, Chan KWY, Grgac K, Li W, McMahon MT, van Zijl PCM (2014) Natural d-glucose as a biodegradable MRI relaxation agent. Magn Reson Med 72:823–828CrossRefPubMedPubMedCentral
Metadata
Title
T 2 mapping of cerebrospinal fluid: 3 T versus 7 T
Authors
Jolanda M. Spijkerman
Esben T. Petersen
Jeroen Hendrikse
Peter Luijten
Jaco J. M. Zwanenburg
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0659-3

Other articles of this Issue 3/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2018 Go to the issue