Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2017

01-04-2017 | Research Article

Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla

Authors: Faezeh Fallah, Jürgen Machann, Petros Martirosian, Fabian Bamberg, Fritz Schick, Bin Yang

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2017

Login to get access

Abstract

Objectives

To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE).

Materials and methods

The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m2 (30.02 ± 6.63 kg/m2) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes.

Results

Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of −59.22 ± 11.59, 2.21 ± 47.04, and −43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of −34.85 ± 19.85, −15.13 ± 11.04, and −33.79 ± 20.38 %. After signal correction, differences of −2.72 ± 6.60, 34.02 ± 36.99, and −2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images.

Conclusion

Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.
Literature
1.
go back to reference Nakajima T, Fujioka S, Tokunaga K, Matsuzawa Y, Tarui S (1989) Correlation of intraabdominal fat accumulation and left ventricular performance in obesity. Am J Cardiol 64(5):369–373CrossRefPubMed Nakajima T, Fujioka S, Tokunaga K, Matsuzawa Y, Tarui S (1989) Correlation of intraabdominal fat accumulation and left ventricular performance in obesity. Am J Cardiol 64(5):369–373CrossRefPubMed
2.
go back to reference Despres JP (1998) The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients risk. Obes Res 6(S1):8–17CrossRef Despres JP (1998) The insulin resistance-dyslipidemic syndrome of visceral obesity: effect on patients risk. Obes Res 6(S1):8–17CrossRef
3.
go back to reference Thamer C, Machann J, Haap M, Stefan N, Heller E, Schnödt B et al (2004) Intrahepatic lipids are predicted by visceral adipose tissue mass in healthy subjects. Diabetes Care 27(11):2726–2729CrossRefPubMed Thamer C, Machann J, Haap M, Stefan N, Heller E, Schnödt B et al (2004) Intrahepatic lipids are predicted by visceral adipose tissue mass in healthy subjects. Diabetes Care 27(11):2726–2729CrossRefPubMed
4.
go back to reference Machann J, Thamer C, Schnödt B, Stefan N, Stumvoll M, Häring HU et al (2005) Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: A whole body MRI/MRS study. Magn Reson Mater Phy 18(3):128–137CrossRef Machann J, Thamer C, Schnödt B, Stefan N, Stumvoll M, Häring HU et al (2005) Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: A whole body MRI/MRS study. Magn Reson Mater Phy 18(3):128–137CrossRef
5.
go back to reference Despres JP, Prudhomme D, Pouliot M, Tremblay A, Bouchard C (1991) Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men. Am J Clin Nutr 54(3):471–477PubMed Despres JP, Prudhomme D, Pouliot M, Tremblay A, Bouchard C (1991) Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men. Am J Clin Nutr 54(3):471–477PubMed
6.
go back to reference van der Kooy K, Seidell J (1993) Techniques for the measurement of visceral fat: a practical guide. Int J Obes Relat Metab Disord 17(4):187–196PubMed van der Kooy K, Seidell J (1993) Techniques for the measurement of visceral fat: a practical guide. Int J Obes Relat Metab Disord 17(4):187–196PubMed
7.
go back to reference Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB et al (2014) Visceral adiposity and the risk of metabolic syndrome across body mass index. J Am Coll Cardiol Cardiovasc Imaging 7(12):1221–1235CrossRef Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB et al (2014) Visceral adiposity and the risk of metabolic syndrome across body mass index. J Am Coll Cardiol Cardiovasc Imaging 7(12):1221–1235CrossRef
8.
go back to reference Sadananthan SA, Prakash B, Leow MKS, Khoo CM, Chou H, Venkataraman K et al (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41(4):924–934CrossRefPubMed Sadananthan SA, Prakash B, Leow MKS, Khoo CM, Chou H, Venkataraman K et al (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41(4):924–934CrossRefPubMed
9.
go back to reference Glover GH (1991) Multipoint dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1(5):521–530CrossRefPubMed Glover GH (1991) Multipoint dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1(5):521–530CrossRefPubMed
10.
go back to reference Würslin C, Machann J, Rempp H, Claussen C, Yang B, Schick F (2010) Topography mapping of whole body adipose tissue using a fully automated and standardized procedure. J Magn Reson Imaging 31(2):430–439CrossRefPubMed Würslin C, Machann J, Rempp H, Claussen C, Yang B, Schick F (2010) Topography mapping of whole body adipose tissue using a fully automated and standardized procedure. J Magn Reson Imaging 31(2):430–439CrossRefPubMed
11.
go back to reference Machann J, Thamer C, Schnödt B, Haap M, Haring HU, Claussen CD et al (2005) Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging 21(4):455–462CrossRefPubMed Machann J, Thamer C, Schnödt B, Haap M, Haring HU, Claussen CD et al (2005) Standardized assessment of whole body adipose tissue topography by MRI. J Magn Reson Imaging 21(4):455–462CrossRefPubMed
12.
go back to reference Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS (2013) Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI. J Magn Reson Imaging 37(2):423–430CrossRefPubMed Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS (2013) Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI. J Magn Reson Imaging 37(2):423–430CrossRefPubMed
13.
go back to reference Thoermer G, Bertram HH, Garnov N, Peter V, Schuetz T, Shang E et al (2013) Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients. J Magn Reson Imaging 37(5):1144–1150CrossRef Thoermer G, Bertram HH, Garnov N, Peter V, Schuetz T, Shang E et al (2013) Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients. J Magn Reson Imaging 37(5):1144–1150CrossRef
14.
go back to reference Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H et al (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 36(6):1421–1434CrossRefPubMed Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H et al (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 36(6):1421–1434CrossRefPubMed
15.
go back to reference Addeman BT, Kutty S, Perkins TG, Soliman AS, Wiens CN, McCurdy CM et al (2015) Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. J Magn Reson Imaging 41(1):233–241CrossRefPubMed Addeman BT, Kutty S, Perkins TG, Soliman AS, Wiens CN, McCurdy CM et al (2015) Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. J Magn Reson Imaging 41(1):233–241CrossRefPubMed
16.
go back to reference Berglund J, Ahlström H, Kullberg J (2012) Model-based mapping of fat unsaturation and chain length by chemical shift imaging-phantom validation and in vivo feasibility. Magn Reson Med 68(6):1815–1827CrossRefPubMed Berglund J, Ahlström H, Kullberg J (2012) Model-based mapping of fat unsaturation and chain length by chemical shift imaging-phantom validation and in vivo feasibility. Magn Reson Med 68(6):1815–1827CrossRefPubMed
17.
go back to reference Müller HP, Raudies F, Unrath A, Neumann H, Ludolph AC, Kassubek J (2011) Quantification of human body fat tissue percentage by MRI. NMR Biomed 24(1):17–24CrossRefPubMed Müller HP, Raudies F, Unrath A, Neumann H, Ludolph AC, Kassubek J (2011) Quantification of human body fat tissue percentage by MRI. NMR Biomed 24(1):17–24CrossRefPubMed
18.
go back to reference Bernstein M, Zhou KK, Zhou X (2004) Handbook of MRI pulse sequences. Elsevier Academic Press, Oxford Bernstein M, Zhou KK, Zhou X (2004) Handbook of MRI pulse sequences. Elsevier Academic Press, Oxford
19.
go back to reference Boyle GE, Ahern M, Cooke J, Sheehy NP, Meaney JF (2006) An interactive taxonomy of MR imaging sequences. RadioGraphics 26(6):e24;quiz e24 Boyle GE, Ahern M, Cooke J, Sheehy NP, Meaney JF (2006) An interactive taxonomy of MR imaging sequences. RadioGraphics 26(6):e24;quiz e24
20.
go back to reference Lu W, Lu Y (2010) Message passing for in-vivo field map estimation in MRI. In: 7th IEEE international symposium on biomedical imaging: from nano to macro (ISBI2010), Rotterdam Lu W, Lu Y (2010) Message passing for in-vivo field map estimation in MRI. In: 7th IEEE international symposium on biomedical imaging: from nano to macro (ISBI2010), Rotterdam
21.
go back to reference Hernando D, Kellman P, Haldar J, Liang Z (2010) Robust water-fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63(1):79–90PubMedPubMedCentral Hernando D, Kellman P, Haldar J, Liang Z (2010) Robust water-fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63(1):79–90PubMedPubMedCentral
22.
go back to reference Ladefoged CN, Hansen AE, Keller SH, Holm S, Law I, Beyer T et al (2014) Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion. EJNMMI Phys 1(1):1–9CrossRef Ladefoged CN, Hansen AE, Keller SH, Holm S, Law I, Beyer T et al (2014) Impact of incorrect tissue classification in Dixon-based MR-AC: fat-water tissue inversion. EJNMMI Phys 1(1):1–9CrossRef
23.
go back to reference Grande FD, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE et al (2014) Fat-suppression techniques for 3 T MR imaging of the musculoskeletal system. Radiographics 34(1):217–233CrossRefPubMedPubMedCentral Grande FD, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE et al (2014) Fat-suppression techniques for 3 T MR imaging of the musculoskeletal system. Radiographics 34(1):217–233CrossRefPubMedPubMedCentral
24.
go back to reference Sharma SD, Artz NS, Hernando D, Horng DE, Reeder SB (2015) Improving chemical shift encoded water–fat separation using object-based information of the magnetic field inhomogeneity. Magn Reson Med 73(2):597–604CrossRefPubMed Sharma SD, Artz NS, Hernando D, Horng DE, Reeder SB (2015) Improving chemical shift encoded water–fat separation using object-based information of the magnetic field inhomogeneity. Magn Reson Med 73(2):597–604CrossRefPubMed
25.
go back to reference Soliman AS, Yuan J, Vigen KK, White JA, Peters TM, McKenzie CA (2014) Max-IDEAL: a max-flow based approach for IDEAL water/fat separation. Magn Reson Med 72(2):510–521CrossRefPubMed Soliman AS, Yuan J, Vigen KK, White JA, Peters TM, McKenzie CA (2014) Max-IDEAL: a max-flow based approach for IDEAL water/fat separation. Magn Reson Med 72(2):510–521CrossRefPubMed
26.
go back to reference Fallah F, Würslin C, Schick F, Yang B (2015) RF and coil inhomogeneity correction in 2D leg images: a new method comparing with LEMS. In: Proceedings of the 23rd scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, p 1176 Fallah F, Würslin C, Schick F, Yang B (2015) RF and coil inhomogeneity correction in 2D leg images: a new method comparing with LEMS. In: Proceedings of the 23rd scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, p 1176
27.
go back to reference Würslin C, Springer F, Yang B, Schick F (2011) Compensation of RF field and receiver coil induced inhomogeneity effects in abdominal MR images by a priori knowledge on the human adipose tissue distribution. J Magn Reson Imaging 34(3):716–726CrossRefPubMed Würslin C, Springer F, Yang B, Schick F (2011) Compensation of RF field and receiver coil induced inhomogeneity effects in abdominal MR images by a priori knowledge on the human adipose tissue distribution. J Magn Reson Imaging 34(3):716–726CrossRefPubMed
28.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29(6):1310–1320CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA et al (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29(6):1310–1320CrossRef
29.
go back to reference Laidlaw DH, Fleischer KW, Barr AH (1998) Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms. IEEE Trans Med Imag 17(1):74–86CrossRef Laidlaw DH, Fleischer KW, Barr AH (1998) Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms. IEEE Trans Med Imag 17(1):74–86CrossRef
30.
go back to reference Banerjee S, Mukherjee DP, Majumdar DD (1999) Fuzzy c-means approach to tissue classification in multimodal medical imaging. Inf Sci 115(14):261–279CrossRef Banerjee S, Mukherjee DP, Majumdar DD (1999) Fuzzy c-means approach to tissue classification in multimodal medical imaging. Inf Sci 115(14):261–279CrossRef
31.
go back to reference Ruan S, Jaggi C, Xue J, Fadili J, Bloyet D (2000) Brain tissue classification of magnetic resonance images using partial volume modeling. IEEE Trans Med Imag 19(12):1179–1187CrossRef Ruan S, Jaggi C, Xue J, Fadili J, Bloyet D (2000) Brain tissue classification of magnetic resonance images using partial volume modeling. IEEE Trans Med Imag 19(12):1179–1187CrossRef
32.
go back to reference Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876CrossRefPubMed Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM (2001) Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5):856–876CrossRefPubMed
33.
go back to reference Monziols M, Collewet G, Mariette F, Kouba M, Davenel A (2005) Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magn Reson Imaging 23(6):745–755CrossRefPubMed Monziols M, Collewet G, Mariette F, Kouba M, Davenel A (2005) Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magn Reson Imaging 23(6):745–755CrossRefPubMed
34.
go back to reference Salvado O, Hillenbrand CM, Wilson DL (2006) Partial volume reduction by interpolation with reverse diffusion. Int J Biomed Imaging 2006:1–13CrossRef Salvado O, Hillenbrand CM, Wilson DL (2006) Partial volume reduction by interpolation with reverse diffusion. Int J Biomed Imaging 2006:1–13CrossRef
35.
go back to reference Donnelly LF, O’Brien KJ, Dardzinski BJ, Poe SA, Bean JA, Holland SK et al (2003) Using a phantom to compare MR techniques for determining the ratio of intraabdominal to subcutaneous adipose tissue. Am J Roentgenol 180(4):993–998CrossRef Donnelly LF, O’Brien KJ, Dardzinski BJ, Poe SA, Bean JA, Holland SK et al (2003) Using a phantom to compare MR techniques for determining the ratio of intraabdominal to subcutaneous adipose tissue. Am J Roentgenol 180(4):993–998CrossRef
36.
go back to reference Alabousi A, Al-Attar S, Joy TR, Hegele RA, McKenzie CA (2011) Evaluation of adipose tissue volume quantification with IDEAL fat–water separation. J Magn Reson Imaging 34(2):474–479CrossRefPubMed Alabousi A, Al-Attar S, Joy TR, Hegele RA, McKenzie CA (2011) Evaluation of adipose tissue volume quantification with IDEAL fat–water separation. J Magn Reson Imaging 34(2):474–479CrossRefPubMed
37.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210CrossRefPubMed
38.
go back to reference Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M et al (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMed Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M et al (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMed
39.
go back to reference Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRef Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRef
40.
go back to reference Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. In: 10th IEEE conference on computer vision and pattern recognition (CVPR1997), San Juan Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. In: 10th IEEE conference on computer vision and pattern recognition (CVPR1997), San Juan
41.
go back to reference Heimann T, Münzing S, Meinzer HP, Wolf I (2007) A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. In: Proceedings of the 20th international conference on information processing in medical imaging (IPMI2007), Kerkrade Heimann T, Münzing S, Meinzer HP, Wolf I (2007) A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. In: Proceedings of the 20th international conference on information processing in medical imaging (IPMI2007), Kerkrade
42.
go back to reference Barron A, Rissanen J, Yu B (1998) The minimum description length principle in coding and modeling. IEEE Trans Inf Theory 44(6):2743–2760CrossRef Barron A, Rissanen J, Yu B (1998) The minimum description length principle in coding and modeling. IEEE Trans Inf Theory 44(6):2743–2760CrossRef
43.
go back to reference Heimann T, Wolf I, Meinzer HP (2007) Automatic generation of 3D statistical shape models with optimal landmark distributions. Methods Inf Med 46:275–281PubMed Heimann T, Wolf I, Meinzer HP (2007) Automatic generation of 3D statistical shape models with optimal landmark distributions. Methods Inf Med 46:275–281PubMed
44.
45.
go back to reference Bamberg F, Kauczor HU, Weckbach S, Schlett CL, Forsting M, Susanne CL, Greiser KH, Weber MA et al (2015) Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277(1):206–220CrossRefPubMed Bamberg F, Kauczor HU, Weckbach S, Schlett CL, Forsting M, Susanne CL, Greiser KH, Weber MA et al (2015) Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277(1):206–220CrossRefPubMed
46.
go back to reference Holle R, Happich M, Löwel H, Wichmann HE (2005) KORA-A research platform for population based health research. Gesundheitswesen 67:19–25CrossRef Holle R, Happich M, Löwel H, Wichmann HE (2005) KORA-A research platform for population based health research. Gesundheitswesen 67:19–25CrossRef
47.
go back to reference Hardy PA, Henkelman RM, Bishop JE, Poon ECS, Plewes DB (1992) Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 2(5):533–540CrossRefPubMed Hardy PA, Henkelman RM, Bishop JE, Poon ECS, Plewes DB (1992) Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 2(5):533–540CrossRefPubMed
48.
go back to reference Stokes AM, Feng Y, Mitropoulos T, Warren WS (2013) Enhanced refocusing of fat signals using optimized multipulse echo sequences. Magn Reson Med 69(4):1044–1055CrossRefPubMed Stokes AM, Feng Y, Mitropoulos T, Warren WS (2013) Enhanced refocusing of fat signals using optimized multipulse echo sequences. Magn Reson Med 69(4):1044–1055CrossRefPubMed
49.
go back to reference Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421CrossRefPubMed Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 26(3):405–421CrossRefPubMed
50.
go back to reference Zhou A, Murillo H, Peng Q (2011) Impact of partial volume effects on visceral adipose tissue quantification using MRI. J Magn Reson Imaging 34(6):1452–1457CrossRefPubMed Zhou A, Murillo H, Peng Q (2011) Impact of partial volume effects on visceral adipose tissue quantification using MRI. J Magn Reson Imaging 34(6):1452–1457CrossRefPubMed
51.
go back to reference Bauer JD, Noël PJ, Vollhardt C, Much D, Degirmenci S, Brunner S, Rummeny EJ, Hauner H (2015) Accuracy and reproducibility of adipose tissue measurements in young infants by whole body magnetic resonance imaging. PLoS One 10(2):1–12CrossRef Bauer JD, Noël PJ, Vollhardt C, Much D, Degirmenci S, Brunner S, Rummeny EJ, Hauner H (2015) Accuracy and reproducibility of adipose tissue measurements in young infants by whole body magnetic resonance imaging. PLoS One 10(2):1–12CrossRef
52.
go back to reference Leinhard OD, Johansson A, Rydell J, Smedby O, Nystrom F, Lundberg P et al (2008) Quantitative abdominal fat estimation using MRI. In: 19th IEEE international conference on pattern recognition (ICPR2008), Tampa Leinhard OD, Johansson A, Rydell J, Smedby O, Nystrom F, Lundberg P et al (2008) Quantitative abdominal fat estimation using MRI. In: 19th IEEE international conference on pattern recognition (ICPR2008), Tampa
Metadata
Title
Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla
Authors
Faezeh Fallah
Jürgen Machann
Petros Martirosian
Fabian Bamberg
Fritz Schick
Bin Yang
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2017
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0588-6

Other articles of this Issue 2/2017

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2017 Go to the issue